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Phase behavior of dipolar fluids from a modified statistical associating
fluid theory for potentials of variable range
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A statistical associating fluid theory for potentials of variable range to model dipolar fluids is
presented. The new theory, termed the SAFT-VR�D equation �the statistical associating fluid theory
for potentials of variable range plus dipole�, explicitly accounts for dipolar interactions and their
effect on the structure of the fluid. This is achieved through the use of the generalized mean
spherical approximation �GMSA� to describe a reference fluid of dipolar square-well segments.
Isothermal-isobaric and Gibbs ensemble Monte Carlo simulations have been performed in order to
test the new theoretical approach. Predictions for the thermodynamic properties and phase behavior
of dipolar square-well monomer and chain fluids, in which one or more segments are dipolar, are
considered and compared with new computer simulation data. The results show that the equation of
state in general provides a good description of the phase behavior of dipolar monomer and chain
fluids. Some deviations are seen between the simulation data and theoretical predictions for
monomer fluids with large dipole moments and for molecules composed of segments with dipoles
in different orientations. This is addressed through the replacement of the GMSA by the linearized
exponential approximation. © 2006 American Institute of Physics. �DOI: 10.1063/1.2337624�
I. INTRODUCTION

Anisotropic interactions can have a significant effect on
the thermodynamic properties of fluids, both for fluids of
simple spherical molecules such as water to chainlike mol-
ecules such as alcohols and ketones. While many equations
of state have been used to describe the thermodynamics of
these systems, they often rely on effective parameters to de-
scribe the molecular interactions, and so have limited appli-
cability beyond the fluids and state conditions to which the
parameters were fitted. In order to develop a truly predictive
approach for the thermophysical properties and phase behav-
ior of fluids, the molecular-level interactions need to be ex-
plicitly included into the equation of state. For nonpolar flu-
ids several molecular-based equations of state, such as the
perturbed hard chain theory and the statistical associating
fluid theory �SAFT�, have been proposed in the literature.
They have parameters that directly relate to molecular-level
physical interactions. Perhaps the most successful of these
molecular-based equations of state �EOS� is the SAFT ap-
proach proposed by Chapman et al.1 on the basis of Wer-
theim’s thermodynamic perturbation theory �TPT�.2 An im-
portant feature of the SAFT theory is that it explicitly takes
into account nonsphericity and association interactions and
provides a powerful method for investigating the phase be-
havior of both nonassociating and associating chain fluids. In
the SAFT framework, the free energy is written as the sum of
four separate contributions:
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where N is the number of molecules, kB Boltzmann’s con-
stant, and T the temperature. Aideal is the ideal free energy,
Amono. the contribution to the free energy due to the monomer
segments, Achain the contribution due to the formation of
bonds between monomer segments, and Aassoc. the contribu-
tion due to association interactions. Hence, a SAFT fluid is a
collection of monomers that can form covalent bonds; the
monomers interact via repulsive and attractive �dispersion�
forces, and, in some cases, association interactions. The
many different versions of SAFT essentially correspond to
different choices for the monomer fluid and different theo-
retical approaches to the calculation of the monomer free
energy and structure. For an excellent overview the reader is
directed to a recent review.3 In this work we focus on the
statistical associating fluid theory for potentials of variable
range �SAFT-VR�, which describes chain molecules formed
from hard-core monomers with attractive potentials of vari-
able range,4,5 typically a square well. The SAFT-VR equation
has been successfully used to describe the phase equilibria of
a wide range of industrially important systems; for example,
alkanes of low molecular weight through to simple
polymers,4,6 and their binary mixtures,7,8 perfluoroalkanes,9

hydrogen fluoride,10 boron triflouride,11 water,12 refrigerant
systems,13 carbon dioxide,8,10,14 and electrolyte solutions15

have all been studied.
While the SAFT equation in its many variations has been

applied to the study of polar fluids, the molecular interac-
tions between the molecules are typically taken into account
in an effective way through the segment size and energy

16–18
parameters. In SAFT equations of state that have been
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specifically developed for polar fluids, dipolar and/or qua-
drupolar interactions are generally incorporated through the
addition of the corresponding terms to Eq. �1�. For the dipo-
lar term, both the �-expansion proposed by Gubbins and
Gray,19 which describes the interaction of dipolar hard sphere
fluids using an angular pair correlation function, and the
more rapidly converging Padé approximation of Stell et al.20

have been widely adopted. For example, Muller and
Gubbins17 applied the �-expansion to describe water as a
hard, spherical associating dipolar fluid within Wertheim’s
TPT theory, achieving good agreement with simulation and
experimental data. In a SAFT-like equation of state for al-
kanols and water Xu et al.18 applied a Padé approximation to
describe dipole-dipole interactions.

A common feature of these equations of state is to treat
nonspherical dipolar molecules as spherical dipolar fluids. As
a result, the orientation of the dipolar interaction and the
possibility of multiple polar sites within a molecule cannot
be taken into account. In contrast, Jog and co-workers21 de-
veloped a SAFT EOS for tangent hard sphere chains with
dipoles on alternate segments. This approach was subse-
quently used by Tumakaka and Sadowski22 to extend the
perturbed chain �PC�-SAFT EOS to describe mixtures of
nondipolar and polar molecules. Dominik et al.23 later com-
pared polar PC-SAFT in which the dipolar contribution of
Jog is used with predictions using an alternate dipolar term
due to Saager and Fischer,24 and found that while both ap-
proaches yield similar results the parameters for the original
polar PC-SAFT were more physically meaningful. More re-
cently, Gross and Vrabec25 developed a contribution for di-
polar interactions based on third order perturbation theory,
which uses simulation data for the vapor-liquid equilibria of
the two-center Lennard-Jones plus point dipole fluid to de-
termine the model constants. The proposed term has been
incorporated into the PC-SAFT equation of state and has
been shown to improve the description of pure component
and mixture phase equilibria for dipolar fluids over the origi-
nal PC-SAFT approach.25

We note that in the SAFT EOS approaches summarized
above, and to the best of our knowledge, in those reported in
the literature to date, the inclusion of dipolar contributions to
the equation of state has been limited to adding a dipolar
term to the free energy, and therefore the structural impact of
the dipolar interactions on the thermodynamics and phase
behavior has not been considered.

An alternative approach to using perturbation theory to
describe dipolar fluids is through integral-equation theory.
Wertheim26 solved the Ornstein-Zernike �OZ� equation using
the mean spherical approximation �MSA� closure for dipolar
hard spheres and provided analytical expressions for the ther-
modynamic and structural properties of the model. Patey and
Valleau27 and Verlet and Weis28 subsequently performed
computer simulations for the dipolar hard sphere system and
found that the theoretical MSA harmonic coefficients for di-
polar spheres are in good agreement with simulation data far
from contact, but are too small at contact. Extensions, such
as the optimized random phase approximation29 �ORPA� and
the exponential �EXP� approximation,27 have been proposed

to systematically improve the results of the MSA for the pair
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correlation function of dipolar hard spheres. In particular, the
linearized version of the EXP �LEXP�, suggested by Verlet
and Weis,28 provides considerable improvement for the pair
correlation function over the MSA result at contact. Subse-
quently, Adelman and Deutch,30 in a similar approach to
Wertheim, solved the OZ equation for simple polar mixtures,
in which the components are restricted to have equal diam-
eters but may have different dipole moments. Although other
integral-equation theories for dipolar fluids, such as the ref-
erence hypernetted chain approximation of Patey and
co-workers31 are available, these do not provide analytical
expressions and so require numerical solution methods.

Here, we present an equation of state to model chain
molecules with one or multiple dipolar sites embedded in
specific segments of the chain through a combination of the
MSA theory for dipolar interactions and the SAFT-VR equa-
tion. We refer to the resulting theory and EOS as SAFT
-VR+D. In our model, the dipolar square-well monomer
fluid is chosen as the reference fluid within the framework of
the SAFT approach. The potential of the reference state
therefore consists of two parts: an isotropic square-well po-
tential and an anisotropic dipolar potential, for which we use
the MSA and the SAFT-VR equation, respectively. Although
the solution of the MSA for dipolar fluids is approximate, it
provides analytical expressions for the thermodynamic and
structural properties, thus permitting the development of a
SAFT-VR equation of state for dipolar fluids in which the
effect of the dipole on the phase behavior is explicitly de-
scribed in the monomer and chain terms and not simply
treated as a perturbation at the level of the monomer. In this
work, two specific systems are considered: molecules with a
dipole moment embedded in each segment and molecules in
which dipole moments are embedded in specific segments.

The remainder of the paper is organized as follows: In
Sec. II we present the SAFT-VR+D model and theory for
dipolar square-well fluids. In Sec. III, details of the molecu-
lar simulations performed are presented. Results for the
phase behavior of pure dipolar square-well fluids are pre-
sented and compared with simulation results in Sec. IV.
Finally, concluding remarks are made and future work is
discussed in Sec. V.

II. MODEL AND THEORY

A. Pure chain fluids

We have developed an accurate equation of state to
model dipolar square-well fluids through a combination of
the SAFT-VR approach and the generalized mean spherical
approximation for dipolar fluids. As in the SAFT-VR ap-
proach, nonassociating molecules are described by four pa-
rameters: the size of the monomer segments �, the depth �
and range � of the square-well potential characterizing the
attractive dispersion interactions between the monomer seg-
ments, and m which determines the number of segments tan-
gentially bonded together in the model chain. The inclusion
of dipolar interactions into the SAFT-VR EOS introduces

three additional parameters: the dipole moment �, and the
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orientation of the dipoles which is determined by the azi-
muthal �, and polar � angles of the intersegment axis along
r, as shown in Fig. 1.32

In the SAFT-VR+D approach, the reference fluid is a
dipolar square-well fluid with the dipole embedded in the
center of the segment from which chain molecules of m tan-
gentially bonded segments can be formed �Fig. 2�. Each seg-
ment has a hard-core diameter � and interacts through an
intermolecular potential of the form

u�r�1�2� = uHS�r,�� − ��SW�r;�� + udipole�r�1�2� . �2�

Here, r is the vector between the center of the two mono-
mers, r= �r�, and �i= ��i ,�i� is the set of angles defining the
orientation of the dipole in monomer i �see Fig. 1�. As in the
SAFT-VR equation the monomer-monomer isotropic poten-
tial consists of a hard sphere repulsive interaction uHS, de-
fined by

uHS�r;�� = �� , r 	 �

0, r 
 � ,
� �3�

and an attractive square-well interaction of depth −� and
shape �SW�r ;��, where � is a parameter associated with the
range of the attractive forces, viz.,

�SW�r;�� = �1, � 	 r 	 ��

0, r 
 �� .
� �4�

The dipole-dipole potential is a long-range anisotropic inter-
action, which can be expressed as,

udipole�r�1�2� = −
�2

r3 D�n1n2r̂� , �5�

where

D�n1n2r̂� = 3�n1 · r̂��n2 · r̂� − n1 · n2. �6�

Here r̂ is the unit vector in the direction of r joining the
center of the segments �Fig. 1� and ni is a unit vector parallel
to the dipole moment of segment i.

Within the SAFT framework, the Helmholtz free energy
A for N chains formed from m spherical segments, which in
this work refers to spherical dipolar square-well segments,
can be written in the form

FIG. 1. The interdipole site coordinate system, with polar axis along r �Ref.
32�.

FIG. 2. Schematic illustrating the molecular model used to describe a chain

fluid with dipole moments embedded in some or all segments.
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NkBT
+
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NkBT
+

Achain

NkBT
, �7�

where Amono. is now the contribution due to the free energy
due to the dipolar square-well monomer segments and Achain

represents the free energy due to chain formation from these
segments and so explicitly includes the effect of the dipole
interactions on the structure of the fluid. We have not in-
cluded the contribution due to association interactions, as
only nonassociating �i.e., hydrogen-bond-type association in-
teractions� dipolar chain molecules are considered in this
first extension of the theory.

In order to understand the nature of the MSA solution
and its relevance to the current problem, we need to examine
it briefly. The MSA for dipolar hard spheres arises from the
exact Ornstein-Zernike equation for linear molecules, given
by

h�r�1�2� = c�r�1�2� +
�

4�

� h�r12�1�3�c�r23�3�2�dr3d�3, �8�

where h�r�1�2� and c�r�1�2� are the total and direct cor-
relation functions, respectively. The total correlation function
is related to the pair distribution function g�r�1�2� by
h�r�1�2�=g�r�1�2�−1. The MSA closure for a hard-core
potential states that

h�r�1�2� = − 1, r 	 � ,

�9�

c�r�1�2� = −
1

kBT
u�r�1�2�, r 
 � .

Hence, the MSA for dipolar hard spheres becomes

h�r�1�2� = − 1, r 	 � ,

�10�

c�r�1�2� =
�2

kBTr3D�n1n2r̂�, r 
 � .

Wertheim26 showed that with this closure the total and direct
correlation functions for dipolar hard spheres in the MSA can
be written in the following simplified forms

h�r�1�2� = hs�r� + h��r���n1n2� + hD�r�D�n1n2r̂� ,

�11�
c�r�1�2� = cs�r� + c��r���n1n2� + cD�r�D�n1n2r̂� ,

where ��n1n2�=n1 ·n2; hs�r�, h��r�, hD�r�, and the corre-
sponding direct correlation quantities are functions of r only.
Moreover, within the MSA, hs�r� and cs�r� are given by their
Percus-Yevick �PY� hard sphere values, and h��r� and hD�r�
are calculated from functions arising from the solution of the
PY approximation for hard spheres. We point out, however,
that much of the Wertheim solution holds true in more gen-
eral cases. For example, consider the dipolar square-well

33
fluid in the generalized MSA �GMSA�:
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h�r�1�2� = − 1, r 	 � ,

�12�

c�r�1�2� = cSW�r� +
�2

kBTr3D�n1n2r̂�, r 
 � ,

where cSW�r� is the direct correlation for the square-well
fluid �i.e., the usual, nondipolar square-well fluid�. With this
GMSA closure, the solution of the Ornstein-Zernike equation
is given by

hDSW�r�1�2� = hSW�r� + h��r���n1n2� + hD�r�D�n1n2r̂� ,

�13�
cDSW�r�1�2� = cSW�r� + c��r���n1n2� + cD�r�D�n1n2r̂� ,

where now hSW�r� and cSW�r� are the correlation functions
for the square-well fluid and h��r� and hD�r� are again ob-
tained in terms of hard sphere Percus-Yevick quantities. This
is because the GMSA closure on these quantities is the same
as that for the MSA dipolar hard sphere case, namely,

h��r� = 0, r 	 � ,

hD�r� = 0, r 	 � ,

�14�
c��r� = 0, r 
 � ,

cD�r� =
�2

kBTr3 , r 
 � .

Note that hSW�r� and cSW�r� can be the exact such quantities
or those calculated by some approximate theory �such as
perturbation theory�. Hence, within the GMSA, the pair dis-
tribution function gDSW�r�1�2� and Helmholtz free energy
of dipolar square-well monomers are given by

gDSW�r�1�2;�,T� = gSW�r;�,T� + h��r;�,T���n1n2�

+ hD�r;�,T�D�n1n2r̂� ,

�15�
ADSW�r;�,T� = ASW�r;�,T� + Adipole�r�1�2;�,T� ,

where gSW�r� is the radial distribution function of the square-
well monomer fluid and the state dependence of the quanti-
ties on � and T is explicitly shown. Detailed expressions for
each term of the equation of state are presented below.

1. Ideal contribution

The free energy of an ideal gas is given by

Aideal

NkBT
= ln���3� − 1, �16�

where �=N /V is the number density of chain molecules, N
the number of molecules, V the volume of the system, and �
the thermal de Broglie wavelength. Since the ideal term is
separated out, the remaining terms are noted as residual free
energies.

2. Monomer contribution

The contribution to the Helmholtz free energy due to the

monomer segments is
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Amono

NkBT
= m

Amono

NskBT
= maM , �17�

where Ns is the total number of dipolar spherical monomers.
Within the GMSA the excess Helmholtz free energy per
monomer aM is given by

aM = aDSW = adipole + aisotropic,

where adipole describes the contribution to the free energy due
to the anisotropic dipolar interaction. Within the high-
temperature perturbation theory of Barker and Henderson, in
the inverse of the temperature �=1/kBT, the isotropic term
disotropic is given by

aisotropic = aHS + �a1
SW + �2a2

SW.

Hence

aM = adipole + aHS + �a1
SW + �2a2

SW. �18�

The isotropic contribution to the free energy is expressed as
in the SAFT-VR approach by aHS, the free energy due to
repulsive interactions between the hard cores, and a1

SW and
a2

SW, the first and second perturbative terms associated with
the isotropic attractive energy. The expression of Carnahan
and Starling is used for the hard sphere term,

aHS =
4� − 3�2

�1 − ��2 , �19�

where � is the packing fraction, defined as �= �� /6��s�
3.

The first perturbative term of the mean attractive energy cor-
responds to the average of the monomer-monomer interac-
tion calculated with the hard sphere structure. Using the
mean-value theorem, we can obtain an expression for a1

SW in
terms of an effective packing fraction �eff evaluated at
contact,34

a1
SW = − 4����3 − 1�gHS�1;�eff� , �20�

where the Carnahan and Starling equation of state is used to
evaluate gHS�1;�eff�.

gHS�1;�eff� =
1 − �eff/2

�1 − �eff�3 . �21�

For the range 1.1���1.8, the effective packing fraction
�eff is described by a function of � and �, viz.,

�eff��,�� = c1� + c2�2 + c3�3, �22�

where the coefficients cn are given by

	c1

c2

c3

 = 	 2.258 55 0.249 434 0.249 434

− 0.669 270 − 0.827 739 − 0.827 739

10.157 6 5.308 27 5.308 27

  	 1

�

�2
 .

�23�

The second perturbation term a2
SW is obtained from the first

density derivative of a1
SW within the local compressibility
approximation,
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a2
SW =

1

2
�KHS�

�a1
SW

��
, �24�

where KHS is the hard sphere isothermal compressibility of
PY

KHS =
�1 − ��4

1 + 4� + 4�2 . �25�

The contribution to the free energy due to the dipolar inter-
action is obtained from Wertheim’s solution of the Ornstein-
Zernike equation for dipolar hard spheres with the MSA clo-
sure as given by Eq. �10�;26 the excess free energy due to the
dipolar interactions is given by

adipole = −
8

�
�2� �1 + ��2

�1 − 2��4 +
�2 − ��2

8�1 + ��4� , �26�

where �=�� and � is the scaling parameter. � is determined
by y, the so-called strength of the dipolar effect,26

3y = qPY�k�� − qPY�− ��� , �27�

and is a dimensionless function of density �, temperature �,
and dipole moment �,

y =
4�

9
���2. �28�

qPY is the dimensionless inverse compressibility of PY, given
by26

qPY��� =
�1 + 2��2

�1 − ��4 . �29�

3. Chain contribution

The contribution to the free energy due to chain forma-
tion from m dipolar square-well monomer segments is given
by

Achain

NkBT
= − �m − 1�ln yDSW���1�2� , �30�

where yDSW���1�2� is the dipolar square-well monomer
background correlation function evaluated at hard-core
contact,

yDSW�r�1�2;�,T� = exp��uDSW�r�1�2��gDSW�r�1�2;�,T� ,

�31�

where gDSW�r�1�2 ;� ,T� is the pair distribution function for
the dipolar square-well fluid and is obtained from GMSA
�Eq. �15��. In the SAFT-VR equation, a high-temperature
perturbation expansion is used to determine the radial
distribution function for the square-well fluid gSW�r�,

gSW�r� = gHS�r� + ��g1�r� , �32�

where the radial distribution function gSW�r� at hard-core
contact is given by

gSW��+� = gHS��� + ��g1��� , �33�

where g1��� can be obtained from a self-consistent calcula-

tion of the pressure using the Clausius virial theorem and the
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first derivative of the free energy with respect to the density.
When compared with the Monte Carlo simulation data of

Verlet and Weis,28 Wertheim’s solution of the OZ equation
with the MSA closure underestimates the spherical harmonic
coefficients at contact. As discussed in the Introduction,
extensions such as ORPA, EXP, and LEXP have been sug-
gested to improve the description of structural properties.
Among them, the LEXP approximation is the most attractive;
the LEXP h��r ;� ,T� and hD�r ;� ,T� appear the most accu-
rate in comparison with simulation data, though the LEXP
result for hs�r� shows little improvement over the MSA re-
sults. Within the LEXP approximation, the radial distribution
function of the square-well monomer is given by

gDSW�r�1�2;�,T� = gSW�r;�,T��1 + h��r;�,T���n1n2�

+ hD�r;�,T�D�n1n2r̂�� . �34�

The spherical harmonic coefficients, h��r ;� ,T� and
hD�r ;� ,T�, can be obtained from the analytic solution of the
PY approximation for the hard sphere fluid as

h��r;�,T� = − 2��hPY�− ��,r� − hPY�2��,r�� ,

�35�

hD�r;�,T� = �hPY�− ��,r� + 2hPY�2��,r� − �
0

r

hPY

�− ��,r��dr� − 2�
0

r

hPY�2��,r��dr�� .

We note that � is a function of temperature, which is deter-
mined by the strength of the dipolar effect as given by Eq.
�27�–�29�. The spherical harmonic coefficient hPY�� ;r� is ob-
tained by solving the OZ equation with the PY closure by
introducing the dimensionless quantities x=r /� and q̄PY�x�
=qPY�x� /�2,

xhPY�x� = − q̄PY� �x� + 12��
0

1

dx�q̄PY�x���x − x��hPY��x

− x��� , �36�

for all x�0, where q̄PY� �x��dq̄PY�x� /dx. q̄PY�x� is given by

q̄PY�x� = �1

2
a�x2 − 1� + b�x − 1� , x � 1

0, x � 1.
� �37�

For x	1,

q̄PY� �x� = ax + b , �38�

where

a =
1 + 2�

�1 − ��2 ,

b = −
3�

2�1 − ��2 . �39�

The analytic expression of hPY�� ;r� at contact can be ob-
+
tained by setting x=1 in Eqs. �36� and �37�, giving
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hPY��,�� =
��5 − 2��
2�1 − ��2 . �40�

Both the LEXP approximation and GMSA are used in the
SAFT-VR+D equation to determine the thermodynamic
properties and phase behavior of the dipolar fluids studied
from the Helmholtz free energy using standard thermody-
namic relations.

B. Chains with mixed dipole moments

While the expressions given above treat chain molecules
formed from dipolar square-well segments, each having the
same dipolar strength, we can also consider chain molecules
that contain segments with different strengths and orienta-
tions of dipole moments.

Adelman and Deutch30 provided an exact solution to the
MSA for simple polar mixtures with equal hard sphere radii
and differing dipole moment, in which the structure and ther-
modynamic properties are completely determined from the
pure dipolar fluid result of Wertheim using an effective den-
sity �̂ and dipole moment �̂. Substituting the effective den-
sity and dipole moment into Eq. �26� and �35�, the Helmholtz
free energy and radial distribution function due to dipolar
interactions can easily be obtained for chain molecules with
mixed dipole moments. The limiting case of chain molecules
composed of a mixture of dipolar and nondipolar segments
can also be studied. In their solution of the MSA Adelman
and Deutch30 determined that the pair correlation function of
the nondipolar segments are unaffected by the presence of
the dipoles on dipolar segments, and vice versa. This is a
direct result of the linearity in the MSA approximation be-
tween the direct correlation function and the dipole-dipole
interaction, as shown in Eq. �10�. Hence, in the limiting case
of a diatomic dipolar molecule in which the dipole moments
of one and/or two of the segments �i and/or � j are zero, the
anisotropic component of the direct correlation function of
the dipolar hard sphere and nondipolar hard sphere is zero.
Accordingly, within the GMSA, the pair distribution function
gDSW�r�1�2� for a square-well diatomic molecule consisting
of one dipolar segment �sphere 1� and one nondipolar seg-
ment �sphere 2� is reduced to the pair distribution function of
nondipolar molecules gSW�r� for three �g12,g21,g22� out of
the four possible pair correlation functions. Correspondingly,
the Helmholtz free energy due to chain formation in the
SAFT-VR+D EOS for chain molecules consisting of dipolar
and nondipolar segments is given by

Achain

NkBT
= − �m − m� − 1�ln ySW���

− �
bonded dipole pairs ij

ln yij
DSW���i� j� , �41�

where m� is the number of bonds between two dipolar
spheres �i.e., equal to the number of terms in the sum�.
Hence, as in the hetero-SAFT-VR approach35 the Helmholtz
free energy directly reflects the structure of the chains
through explicit dependence on the magnitudes and relative

orientation of dipoles in neighboring dipolar segments.
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III. COMPUTER SIMULATIONS

Monte Carlo simulations have been performed to study
the thermodynamic properties of dipolar square-well mono-
mer and chain fluids. The simulations were performed in
both the isothermal-isobaric �NPT� and Gibbs �GEMC� en-
sembles. Intermolecular and nonbonded intramolecular inter-
actions, except for nearest neighbors along the chain, are
taken into account through the dipolar square-well potential
given by Eq. �2�. The reaction field36,37 method, which has
been shown to be adequate to calculate vapor-liquid phase
behavior for systems with long-range dipolar potentials,38 is
applied to deal with the long-range dipolar interactions. The
reaction field approach replaces the molecules beyond a cut-
off distance by a dielectric continuum, the effect of which is
taken into account by including a new term into the dipolar
potential, viz.,39

udipole = �− �1�2

r3 �D −
2��RF − 1�
2�RF + 1

�1�2

rc
3 , r 	 rc

0, r � rc,
�

�42�

where rc is the cutoff distance beyond which the pair poten-
tial vanishes and �RF the dielectric constant of the con-
tinuum. In the simulations reported here, the value of rc is set
to 2.5�, and �RF to �. In both the NPT and GEMC simula-
tions, the usual periodic boundary conditions and minimum
image convention are used. In the NPT ensemble simula-
tions, one cycle consists of three kinds of trial moves: N trial
displacements of randomly chosen molecules, N trial rota-
tions, and one volume change. The extent of each trial move
is adjusted to give an individual acceptance probability of
30%–40%. In the GEMC simulations, particle exchanges be-
tween two phases are performed in addition to the three trial
moves described above. The traditional Widom particle in-
sertion method is used to achieve particle exchanges. Each
simulation was started from an initial configuration in which
128 molecules are placed on a lattice in the simulation box.
An initial simulation of 100 000–500 000 cycles was per-
formed to equilibrate the system, before averaging for be-
tween 500 000 and 2 000 000 cycles. The thermodynamic
properties of the system were obtained as ensemble averages
and the errors estimated by determining the standard devia-
tion.

Before studying the dipolar square-well fluids of interest
in this work, to check the accuracy of our simulation code,
we calculated the coexistence curve of several Stockmayer
fluids using the GEMC technique and the reaction field
method to treat the long-range dipolar interactions. Good
agreement was obtained with the results of Smit et al.,40 who
accounted for the long-range dipolar interactions with the
Ewald summation method.

IV. RESULTS AND DISCUSSION

We have studied the phase behavior of several dipolar
square-well monomer fluids �systems 1–4�, several dipolar
diatomic fluids with a dipole moment in each segment, �sys-

tems 5–12�, and dipolar triatomic fluids with one nondipolar
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segment �systems 13 and 14�. The details of these systems
are listed in Table I. Comparisons are made between the
theoretical predictions and NPT and Gibbs ensemble simu-
lation data in order to validate and test the predictive ability
of the SAFT-VR+D EOS for dipolar monomer and chain
molecules. The numerical results of the NPT simulations are
reported in Tables I–IV, and those of the GEMC simulations
in Table V of the supplementary material.41

In Fig. 3, we present comparisons of the SAFT-VR+D
predictions with molecular simulation results for the PVT
behavior of monomer fluids with different dipole moments
�systems 1–3�. From the figure we see that the system with
the highest reduced dipole moment �system 3� exhibits the
highest density at a given pressure and temperature, as would
be expected due to the increase in attractive interactions be-
tween the molecules. We observe good agreement between
the simulation results and theoretical predictions over a wide
range of temperatures and pressures for systems 1 and 2;
however, the SAFT-VR+D EOS is seen to slightly underpre-
dict the density at a given temperature and pressure for sys-
tem 3, which has the highest value of the reduced dipole
moment.

In order to obtain a more comprehensive understanding
of the thermodynamic properties of the systems studied and
further test the SAFT-VR+D approach, we also determined
the fluid phase diagram for systems 1 and 2. The results are
presented in Fig. 4 along with the phase diagram for a non-
dipolar square-well fluid with the same model parameters
�i.e., �*=1.0, �=1.5, and �*=1.0� for comparison. From the
figure we see that as the dipole moment increases the critical
temperature of the system increases, due to the increase in
the attractive interactions. We also note from the figure that
the SAFT-VR+D equation appears to overestimate the criti-
cal point; this is an unavoidable feature of equations of state
such as SAFT that are based on analytical expressions for the
free energy.42 Away from the critical region we see good
agreement between the theory and simulation for system 1
with the lowest dipole moment. For fluids with larger re-

TABLE I. Model parameters for the dipolar square-w

System �* � �*

1 1 1.5 1
2 1 1.5 1
3 1 1.5 1
4 1 1.8 1
5 1 1.5 1
6 1 1.5 1
7 1 1.8 1
8 1 1.8 1
9 1 1.5 1
10 1 1.5 1
11 1 1.5 1
12 1 1.5 1
13 1 1.5 1
14 1 1.5 1

aParallel dipole moments.
bPerpendicular dipole moments.
duced dipole moments, we notice a slight disagreement
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between the SAFT-VR+D description and simulation data,
particularly for the liquid density at low temperatures. Patey
and Valleau27 observed a similar trend in that the GMSA
does not provide a good description of the thermodynamic
properties of dipolar hard spheres with large dipole
moments.

onomer and chain fluids studied.

m ��1
*�2 ��2

*�2 ��3
*�2

1 0.5 ¯ ¯

1 1.0 ¯ ¯

1 2.0 ¯ ¯

1 1.0 ¯ ¯

2 0.5a 0.5a
¯

2 0.5b 0.5b
¯

2 0.5a 0.5a
¯

2 0.5b 0.5b
¯

2 1.0a 0.5a
¯

2 1.0b 0.5b
¯

2 0.5b 0.5a
¯

2 1.0b 1.0a
¯

3 1.0a 1.0a 0.0
3 1.0b 1.0b 0.0

FIG. 3. Isotherms for dipolar square-well monomer fluids with �*=1.0, �
=1.5, �*=1.0, and �a� dipole moment �*2=0.5 at T*=1.0, 1.2, 1.4, and 1.6
�from bottom to top�, �b� dipole moment �*2=1.0 at T*=1.0, 1.2, 1.4, and
1.6 �from bottom to top�, and �c� dipole moment �*2=2.0 at T*=1.4, 1.6,
1.8, and 2.0 �from bottom to top�. The dashed lines represent predictions
from the SAFT-VR+D equation with the GMSA approximation and the
ell m
squares the NPT MC simulation data.
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In the original development of the SAFT-VR EOS Gil-
Villegas et al.43 determined that SAFT-VR was in good
agreement with GEMC simulation data for the vapor-liquid
coexistence densities of square-well monomer fluids with po-
tential ranges 1.1���1.8. In order to examine the effect of
� on the phase behavior of dipolar fluids and further test the
SAFT-VR+D approach, we have studied the PVT behavior
of the dipolar square-well monomer fluid with �=1.8, �*

=1.0, �*=1.0, and �*2=1.0 �system 4� to compare to the
results for system 2, for which �=1.5 and with all other
parameters the same. The results are presented in Fig. 5.
Compared to the results for system 2 �Fig. 3�b��, we note that
as � increases, the density of the system increases at a given
pressure and temperature. Good agreement is observed be-

FIG. 4. Coexisting densities for dipolar square-well monomer fluids with
�*=1.0, �=1.5, �*=1.0, and dipole moment �a� �*2=0.5 and �b� �*2=1.0.
The squares represent the GEMC simulation data, the dashed lines predic-
tions from the SAFT-VR+D equation with the GMSA approximation, and
the dotted lines predictions from the SAFT-VR+D equation for �*2=0.

FIG. 5. Isotherms for dipolar square-well monomer fluids with �*=1.0, �
=1.8, �*=1.0, and dipole moment �*2=1.0 at T*=1.6, 2.0, 2.4, and 2.8
�from bottom to top�. The squares represent NPT MC simulation results and
the dashed lines predictions from the SAFT-VR�D equation with the

GMSA approximation.
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tween the theoretical predictions and simulation data; the
new SAFT-VR+D approach is seen to capture the effect of
the potential range on the phase behavior.

Having seen that the SAFT-VR+D equation can accu-
rately describe the fluid phase behavior of dipolar square-
well monomer fluids, we now turn to dipolar chain mol-
ecules. We first focus on diatomic molecules with a dipole
moment in the center of both segments. In the SAFT-VR
+D approach, the relative orientation of each dipole moment
can be specifically determined by the azimuthal � and polar
� angles of the intersegment axis �Fig. 1�. Here we consider
two specific diatomic molecules in which the dipole mo-
ments are both oriented perpendicular and parallel to the vec-
tor joining the centers of the monomers, as illustrated in
Figs. 6�a� and 6�b�. Since the radial distribution function is
dependent on the relative orientation of the dipole moments,
here we are examining the ability of the theory to capture the
effect of dipole orientation on the phase behavior of dipolar
chain molecules. In Fig. 7 we present the PVT behavior for
dipolar square-well diatomic fluids which have the same
model parameters ��*=1.0, �=1.5, �*=1.0, and �*2=0.5� in

FIG. 6. Schematic model for diatomic dipolar fluids with dipole moments
embedded in every segment �a� perpendicular and �b� parallel to the vector
joining the centers of the monomer segments.

FIG. 7. Isotherms for dipolar square-well diatomic fluids with �*=1.0, �
=1.5, �*=1.0, and dipole moments �*2=0.5 �a� perpendicular at T*=1.2,
1.4, 1.6, and 1.8 �from bottom to top� and �b� parallel at T*=1.0, 1.2, 1.4,
and 1.6. The squares represent MC simulation results, the solid lines predic-
tions from the SAFT-VR�D equation with the LEXP approximation, and
the dashed lines from SAFT-VR�D approach with the GMSA

approximation.
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each segment, but in �a� the dipole moments are aligned
perpendicularly and in �b� they are aligned in parallel. The
corresponding phase envelopes are presented in Fig. 8. From
the figures, we find that the fluids with the dipole moments
aligned in parallel exhibit a slightly higher density at a given
pressure and temperature, and a slightly lower critical tem-
perature, than the fluids in which the dipoles are perpendicu-
larly aligned. We find that the SAFT-VR+D EOS with the
GMSA provides good agreement with the simulation data for
the isotherms studied and the coexisting densities of the di-
polar diatomic fluid with dipole moments in the perpendicu-
lar �system 6� arrangement. However, for the dipolar di-
atomic fluid in which the dipole moments are aligned in
parallel �system 5�, the SAFT-VR+D EOS with the GMSA
approximation underpredicts the density at a given pressure
and temperature compared with the NPT ensemble simula-
tions, particularly at low densities, and underestimates the
saturated liquid density compared with the GEMC simula-
tions. We believe that the main reason for the observed de-
viation is that, as stated earlier, Wertheim’s solution for di-
polar hard spheres with the MSA closure underestimates the
radial distribution function for dipolar fluids at contact. If the
GMSA is replaced by the LEXP approximation in the
SAFT-VR+D EOS, a significant improvement in the theo-
retical predictions in comparison with the simulation data is
seen �Figs. 7 and 8� for both the PVT and phase behavior.
This result confirms that an accurate description of the fluid
structure is very important in determining the thermody-
namic properties of chain fluids. We have also studied the

FIG. 8. Coexisting densities of dipolar square-well diatomic fluids with �*

=1.0, �=1.5, �*=1.0, and dipole moments �*2=0.5 �a� perpendicular and
�b� parallel. The squares represent MC simulation results, the solid lines
predictions from the SAFT-VR�D equation with the LEXP approximation,
the dashed lines from the SAFT-VR�D equation with the GMSA approxi-
mation, and the dotted lines predictions from the SAFT-VR+D equation for
�*2=0.
PVT behavior of the parallel and perpendicularly aligned di-
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polar diatomic fluids with �=1.8 �systems 7 and 8�, the re-
sults of which are presented in Fig. 9. Again we observe that
the SAFT-VR+D EOS with the LEXP approximation pro-
vides good agreement with the simulation data for fluids with
the dipole moments arranged perpendicularly and in parallel,
while the use of the GMSA results in significant deviations
for the fluids in which the dipolar segments are aligned in
parallel. The SAFT-VR+D equation is therefore able to cap-
ture both the effect of potential range and orientation of the
dipolar interactions on the phase behavior.

Since real fluids, such as ketones, alcohols, and many
polymers, are typically composed of a mixture of polar and
nonpolar groups, it is desirable to be able to model chain
molecules comprised of segments that have different magni-
tudes and orientations of dipole moments. To this end, we
have studied the PVT behavior of dipolar diatomic fluids
with different dipole moments in each segment �systems 9
and 10�. In particular, we have studied diatomics in which
the magnitude of the dipole in one segment is twice that of
the other segment �Fig. 10�a� and 10�b��, the results of which
for perpendicular and parallel orientations of the dipoles are
shown in Figs. 11�a� and 11�b�, respectively. We again find
that the SAFT-VR+D approach with the LEXP approxima-

FIG. 9. Isotherms for dipolar square-well �SW� diatomic fluids with �*

=1.0, �=1.8, �*=1.0, and dipole moments �*2=0.5 �a� perpendicular at
T*=2.0, 2.4, 2.8, and 3.2 �from bottom to top� and �b� parallel at T*=2.0,
2.4, 2.8, and 3.2. The squares represent MC simulation results, the solid
lines predictions from the SAFT-VR�D equation with the LEXP approxi-
mation, and the dashed lines from the SAFT-VR�D equation with the
GMSA approximation.

FIG. 10. Schematic showing the diatomic molecular models used to de-
scribe a chain fluid with different magnitude and orientation of dipole mo-

ments embedded in the center of each segment.
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tion provides good agreement with the simulation data for
diatomic fluids with different magnitudes of dipole moments
arranged both perpendicularly and in parallel. However,
again, the SAFT-VR+D approach with the GMSA approxi-
mation underestimates the densities at a given pressure and
temperature for the molecule with the dipole moments ar-
ranged perpendicularly. We have also studied the PVT be-
havior of diatomic dipolar fluids with different orientations
of dipole moments in each segment �systems 11 and 12�, as
shown in Fig. 10�c�. In these fluids, the pair distribution
function due to the dipolar interaction will vanish since the
angle-related functions ��n1n2� and D�n1n2r̂� in Eq. �15� are
zero for the 90° relative orientation of the two dipoles �Fig.
10�c��. In this case, the predictions from the SAFT-VR+D
approach with the LEXP approximation and the GMSA ap-
proximation are the same. From Fig. 12, we note that in all
cases, good agreement is observed between the predictions
from the SAFT-VR+D approach and simulation data, indi-
cating that the theory can accurately describe the thermody-
namic and phase behavior of fluids composed of segments
with differing dipole moments.

To illustrate the generality of this approach, we have also
studied a model triatomic fluid in which the dipole moments
are arranged perpendicularly or in parallel in the first two
segments, with the third segment having no dipole moment
�Fig. 13�. Within the solution of Adelman and Deutch30 for
polar mixtures with the MSA closure, the SAFT-VR+D
EOS describes a molecule consisting of a mixture of nondi-

FIG. 11. Isotherms for dipolar square-well diatomic fluids with �*=1.0, �
=1.5, and �*=1.0 at T*=1.0, 1.2, 1.4, and 1.6 with �a� perpendicular dipole
moments of �1

*2=1.0 and �2
*2=0.5 and �b� parallel dipole moments of �1

*2

=1.0 and �2
*2=0.5. The squares represent MC simulation results, the solid

lines predictions from the SAFT-VR�D equation with the LEXP approxi-
mation, and the dashed lines from the SAFT-VR�D equation with the
GMSA approximation.
polar and dipolar segments with an effective dipole moment
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and density for the dipolar interaction. As mentioned before,
due to the linearity in the MSA approximation, the aniso-
tropic contribution to the pair distribution function due to the
dipolar interaction between dipolar segments and nondipolar
segments equals zero. In the SAFT-VR+D approach, the
pair distribution function between dipolar square-well seg-
ments and nondipolar square-well segments is therefore
equivalent to that between nondipolar square-well segments.
In the case of the triatomic molecules shown in Fig. 13, the
pair distribution function between segments 1 and 2 is
gDSW�r�1�2� and the pair distribution function between seg-
ments 2 and 3 is g23

SW�r�. The Helmholtz free energy due to
chain formation is therefore given by Eq. �41�, in which the
total number of segments is 3 and the number of pairs of
dipolar segments is 1. This approach therefore describes a
heteronuclear fluid, as the chain is composed of unlike seg-
ments, and can be modeled as in our previous work.44 In Fig.
14 we present isotherms predicted from the SAFT-VR+D
approach compared to NPT MC simulation data for two tri-
atomic fluids �systems 13 and 14� with �*=1.0, �=1.5, �*

=1.0, and reduced dipole moments of �*2=1.0 in both seg-
ments and arranged in parallel �system 13� and perpendicu-
larly �system 14�. We find that the fluid with the dipole mo-

FIG. 12. Isotherms for dipolar square-well diatomic fluids with �*=1.0, �
=1.5, �*=1.0, and �a� perpendicular dipole moments of �1

*2=0.5 and paral-
lel dipole moments of �2

*2=0.5 at T*=1.0, 1.2, 1.4, and 1.6. �b� perpendicu-
lar dipole moment of �1

*2=1.0 and parallel dipole moment of �2
*2=1.0 at

T*=1.0, 1.2, 1.4, and 1.6. The squares represent MC simulation results, and
the solid lines predictions from the SAFT-VR�D equation with the LEXP
approximation.

FIG. 13. Schematic illustrating the triatomic molecular model used to de-
scribe a chain fluid with dipole moments embedded in the center of the first

two segments. Segments are labeled 1–3 from left to right.
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ments in the parallel arrangement has a slightly higher
pressure than the fluid with dipole moments arranged per-
pendicularly at given density and temperature, when all other
parameters are the same. Good agreement is observed be-
tween the predictions from the SAFT-VR+D approach with
the GMSA approximation and simulation data for system 14
in which the dipole moments are aligned perpendicularly,
while the SAFT-VR+D EOS with the LEXP approximation
again provides excellent predictions for both fluids. Hence
the solution of Adelman and Deutch when combined with the
hetero-SAFT-VR approach is able to accurately predict ther-
modynamic properties for dipolar square-well chain fluids
consisting of dipolar and nondipolar segments.

V. CONCLUSIONS

In this work, a SAFT-VR-like approach, SAFT-VR+D,
has been developed to study dipolar chain fluids which takes
the dipolar square-well fluid as the reference state. In this
way, the SAFT-VR+D approach explicitly takes into ac-
count the magnitude and orientation of dipole moments, all
of which are found to affect the thermodynamics and phase
behavior of dipolar square-well monomer and chain fluids. In
order to gain a comprehensive understanding of the thermo-
dynamic properties of the systems studied, and validate the
SAFT-VR+D approach, both NPT MC and GEMC simula-
tions were performed to obtain simulation data to compare to
the theoretical predictions. We found that the SAFT-VR+D
equation with the GMSA approximation provides good pre-
dictions for the phase behavior of the dipolar monomer fluids

FIG. 14. Isotherms for dipolar square-well triatomic fluids with �*=1.0, �
=1.5, �*=1.0, and dipole moments �*2=1.0 �a� perpendicular and �b� par-
allel at T*=1.6, 1.8, 2.0, and 2.2 �from bottom to top�. The squares represent
MC simulation results, the solid lines predictions from the SAFT-VR�D
equation with the LEXP approximation, and the dashed lines from the
SAFT-VR�D equation with the GMSA approximation.
studied and of chain fluids with a perpendicular arrangement
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of the dipole moments. A more accurate approximation for
the radial distribution function of dipolar square-well fluids
�LEXP approximation� was implemented to improve the per-
formance of the SAFT-VR+D EOS for dipolar chain fluids
in which the dipole moments are parallel to the vector join-
ing the centers of the monomers. It is found that the SAFT
-VR+D equation with the LEXP approximation is suitable
for fluids with both vertical and horizontal arrangements of
the dipole moments. Furthermore, using the solution of Adel-
man and Deutch for polar mixtures, the SAFT-VR+D with
LEXP approximation gives a good description of the thermo-
dynamic properties of dipolar chain fluids consisting of non-
dipolar segments and dipolar segments. In future work, the
SAFT-VR+D approach will be applied to study real fluids
and their mixtures.
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