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Configurational-bias Monte Carlo has been incorporated into the Wang-Landau method. Although
the Wang-Landau algorithm enables the calculation of the complete density of states, its applicability
to continuous molecular systems has been limited to simple models. With the inclusion of more
advanced sampling techniques, such as configurational-bias, the Wang-Landau method can be used
to simulate complex chemical systems. The accuracy and efficiency of the method is assessed using
as a test case systems of linear alkanes represented by a united-atom model. With strict convergence
criteria, the density of states derived from the Wang-Landau algorithm yields the correct heat capacity
when compared to conventional Boltzmann sampling simulations. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4766354]

I. INTRODUCTION

Monte Carlo (MC) simulations are a widely used tool
for determining the structural and thermophysical properties
of molecular systems. Simulations in the Gibbs ensemble1, 2

or grand canonical ensemble3, 4 with configurational-bias5

(CBMC) enable the simulation of phase equilibria for
complex molecular systems. In particular, MC simulations
with configurational-bias have been used to calculate the
phase equilibria of linear and branched alkanes6–13 ring
structures,14–16 and other complex molecules with strong
intramolecular potentials.17–24 However, even with CBMC
the simulations become challenging for very dense sys-
tems and/or very low temperatures, where adequately sam-
pling phase space in a reasonable amount of simulation
time is problematic. Numerous MC algorithms have been
proposed to overcome this difficulty, including expanded
ensemble,25, 26 parallel tempering,27–30 umbrella sampling,31

and multicanonical algorithms.32, 33

A more recent method is the Wang-Landau
algorithm,34, 35 which allows for the direct calculation
of the density of states. The density of states, or degeneracy,
can be used to calculate all thermodynamic properties at the
conditions of interest, including the free energy, provided
the relevant energy range has been sampled. To date, the
Wang-Landau algorithm has been primarily used to study
spin and lattice systems; however, some researchers have
applied the method to continuous systems. For example, Yan
et al.36 and Shell et al.37 used the Wang-Landau algorithm to
calculate vapor-liquid coexistence curves for small systems
of the Lennard-Jones (LJ) fluid. Faller et al.38 studied a
binary Lennard-Jones glass using the Wang-Landau method
and Poulain et al. studied Lennard-Jones clusters.39 Several

a)Electronic mail: c.mccabe@vanderbilt.edu.

groups have used the Wang-Landau algorithm to study
the collapse transition in fully flexible bead-spring and
square well polymers,40–45 for which adequate sampling can
be obtained through single-bead displacements and other
simple move types, and to study the folding of simple peptide
models in vacuum or continuum solvent39, 46–48 where the
conformational degrees of freedom are limited to the dihedral
rotation of rigid side chains about the protein backbone.
More recently, Yin and Landau have also studied the thermo-
dynamics of water clusters using several different rigid water
models.49 For these systems with limited intra-molecular
interactions, advanced moves, such as configurational-bias,
are unnecessary.

In order for the Wang-Landau algorithm to be more
broadly applicable to systems of chemical interest, the method
must be able to sample the conformations of complex
molecules with strong intramolecular potentials (i.e., bond
stretching, angle bending, and/or torsional potentials). This
can be done either through a modified Wang-Landau approach
incorporating molecular dynamics50, 51 or through the addi-
tion of more advanced MC moves. Although several advanced
MC algorithms for sampling the internal degrees of freedom
of complex molecules exist, such as concerted rotation,52 end
bridging,53 and pivot moves,54 the most widely used is the
CBMC method.5 Since the off-lattice version of CBMC was
first applied to linear chain systems,6–8, 55, 56 we will also use
linear alkanes as a test case for the applicability of CBMC to
Wang-Landau simulations.

The remainder of this paper is organized as follows:
we begin with a brief discussion of the Wang-Landau
algorithm in Sec. II, followed by a more in-depth discussion
of configurational-bias and its incorporation into a Wang-
Landau simulation in Sec. III. The details of our simulations
can be found in Sec. IV. We then discuss the importance
of the appropriate choice of parameters in a Wang-Landau
simulation in Sec. V A and the results of our simulations in
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Sec. V B. The conclusions of this work can be found in
Sec. VI.

II. WANG-LANDAU ALGORITHM

In a Wang-Landau simulation, configurations are sam-
pled with a probability proportional to the reciprocal of the
density of states,

P (U ) ∝ 1

�(U )
, (1)

where � is the density of states or degeneracy. Obviously, the
density of states is not known a priori; therefore, the simula-
tion begins with a value of �(U) = 1 for every U in the spec-
ified energy range. Although initially developed for spin sys-
tems with discrete energy levels, the algorithm can be applied
to continuous systems by discretizing the energy. The simula-
tion begins in a random configuration at an energy Uo (where
Umin ≤ Uo ≤ Umax). A trial move generates a new state with
energy Un, which is accepted according to

acc(o → n) = min

{
1,

�(Uo)

�(Un)

}
. (2)

Note that the temperature no longer appears in the acceptance
rule. This means that a single Wang-Landau simulation can
be used to determine properties over a wide range of temper-
atures, provided that the relevant energy range is adequately
sampled. After each move, the estimate of the density of states
is updated with a modification factor, f,

�(U ) → �(U ) × f, (3)

where f > 1. Since the density of states spans many orders
of magnitude, the natural logarithm of the density of states is
typically calculated instead, such that

ln �(U ) → ln �(U ) + ln f. (4)

In addition to the density of states, a histogram (H) of visited
states is also collected and incremented after each move

H (U ) → H (U ) + 1. (5)

The simulation continues until the histogram is sufficiently
“flat,” that is, until each value of H(U) is not less than a spec-
ified percentage of the average value of H(U),

H (U ) ≥ p × 〈H (U )〉, (6)

where p is the flatness criterion. When the histogram is “flat,”
the modification factor is reduced according to f → f 1/2 or ln f
→ ln f/2, the histogram entries are reset to zero, and the sim-
ulation is continued. Once the modification factor becomes
less than some predetermined value, the simulation ends. We
should note that since the density of states is continuously up-
dated the Wang-Landau algorithm violates detailed balance;
however, towards the end of the simulation the modification
factor has become so small that detailed balance is essentially
satisfied.

III. CONFIGURATIONAL-BIAS ALGORITHM

The CBMC algorithm is an extension of the self-avoiding
random walk scheme proposed by Rosenbluth and Rosen-
bluth in 1955 for the simulation of lattice polymers.57 In a
CBMC move, an arbitrary number of segments, or beads, of
the molecule are grown in a stepwise manner. Before a bead is
grown a number of trial sites are generated and the Boltzmann
weight of each trial site is computed. One of these trial sites is
then selected based on its Boltzmann weight. Favorable con-
figurations with large Boltzmann weights are chosen more
often than unfavorable configurations with low Boltzmann
weights. Since its development in 1990,5 several variations of
the CBMC algorithm have been proposed.7, 12–14, 16, 20, 56, 58–60

For simplicity, the following discussion will focus on simple
unbranched chains. For further details, the reader is referred
to the overview in Frenkel and Smit61 as well as the original
papers.

When using CBMC, it is often convenient to split the po-
tential energy into two parts, the internal, or bonded potential
(U int) and the external, or nonbonded potential (U ext). The
bonded potential, which may include the bending, stretching,
and torsional potentials, is used to generate trial sites. The
nonbonded potential is used to bias the selection of a trial site
from the set of trial sites generated by the bonded potential.
The way that the potential is separated into these two parts is
completely arbitrary and may be adjusted for different appli-
cations in order to increase the efficiency of the method.

During a CBMC move, any portion of the chain, up to
and including the entire chain, may be regrown. Let us con-
sider the regrowth of a chain of s segments, or beads. Each
segment l is grown consecutively until the chain is complete
by first generating k trial orientations bi according to the
Boltzmann weight of the internal potential of the chain

P
generating
li (bi)db = e−βU int

li db∫
e−βU int

l db
= Ce−βU int

li db, (7)

where C is a constant of integration. One of the trial sites
bi for segment l is then selected according to the Boltzmann
weight of its external potential

P
selecting
li (bi) = e−βU ext

li

wl(n)
, (8)

where

wl(n) =
k∑

j=1

e−βU ext
lj (9)

is the Rosenbluth weight of segment l. Once the entire chain
of s segments has been grown, the Rosenbluth weight for the
new configuration can be computed by multiplying the Rosen-
bluth weights of each segment

W (n) =
s∏

l=1

wl(n) (10)

and the probability of making the transition from the old to
the new configuration can be computed by multiplying the
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probability of generating and selecting each segment

α(o → n) =
s∏

l=1

P
selecting
li P

generating
li , (11)

where i denotes the specific trial site that was selected. Sub-
stituting Eqs. (7) and (8) and recalling that U = U ext + U int

we find that

α(o → n) =
s∏

l=1

Ce−βU (n)

wl(n)
. (12)

In order to compute the acceptance probability for the
new chain, the Rosenbluth weight W for the old configura-
tion (o) must be computed. This is done in much the same
way as for the new configuration, except that k − 1 trial sites
are generated and the kth orientation is the actual old config-
uration. Hence, the probability that each of the kth segments
(that is, each of the segments in the old configuration) would
have been generated is given by

P
generating
lk (bk)db = e−βU int

lk db∫
e−βU int

l db
= Ce−βU int

lk db (13)

and the probability of selecting each of the kth segments is

P
selecting
lk (bk) = e−βU ext

lk

wl(o)
, (14)

where the Rosenbluth weight for segment l is given by

wl(o) =
k−1∑
j=1

eβU ext
lj + e−βU ext

lk , (15)

where again e−βU ext
lk is the actual external potential for the lth

segment in the old configuration. The probability of making a
transition to the old chain configuration starting from the new
configuration is thus given by

α(n → o) =
s∏

l=1

Ce−βU (o)

wl(o)
. (16)

To derive the appropriate acceptance criteria, we must recall
the condition of microscopic reversibility, which states that
the number of moves to and from any given state i must be
equal. In other words,

P (o) α(o → n) acc(o → n) = P (n) α(n → o) acc(n → o),
(17)

where P(i) is the probability of being in state i, α(i → j) is
the probability of proposing a move from state i to state j, and
acc(i → j) is the probability of accepting the move. Unbiased
moves, such as simple translations and rotations, are proposed
with equal probability, and thus α(i → j) = α(j → i). In a
configurational-bias move, however, α(i → j) �= α(j → i).

A. Boltzmann sampling

In a conventional Metropolis-style simulation in the
canonical ensemble, the probability of being in any given state
i is

P (i) = e−βUi

Q
, (18)

where Q is the canonical ensemble partition function and Ui

denotes the potential energy of state i.62 Now consider the
growth of a single segment l. The probability of going from
state o to state n is given by

P (o) α(o → n) acc(o → n) = e−βUo

Q

Ce−βUn

wl(n)
acc(o → n)

(19)
and the reverse probability is given by

P (n) α(n → o) acc(n → o) = e−βUn

Q

Ce−βUo

wl(o)
acc(n → o).

(20)
Imposing the condition of microscopic reversibility yields

acc(o → n) wl(o)

acc(n → o) wl(n)
= 1 (21)

and hence the new segment is accepted with probability

acc(o → n) = min

{
1,

wl(n)

wl(o)

}
. (22)

Notice that we do not need to know either the partition func-
tion or constant of integration. The acceptance probability for
the entire chain of s segments is given by the product of the
probabilities of the individual segments

acc(o → n) = min

{
1,

s∏
l=1

wl(n)

wl(o)

}
= min

{
1,

W (n)

W (o)

}
.

(23)

B. Wang-Landau sampling

If instead we are performing a Wang-Landau simulation
at constant density, from which we can calculate properties in
the canonical ensemble, the probability of being in state i is
given by

P (i) ∝ 1

�(Ui)
, (24)

where �(U) is the density of states or microcanonical ensem-
ble partition function. For unbiased moves, the acceptance ra-
tio is given by Eq. (2). For configurational-bias moves, we
now have

P (o) α(o → n) acc(o → n) = 1

�(Uo)

Ce−βUn

wl(n)
acc(o → n)

(25)
and

P (n) α(n → o) acc(n → o) = 1

�(Un)

Ce−βUo

wl(o)
acc(n → o).

(26)
Therefore, the appropriate acceptance probabilities are given
by

acc(o → n)

acc(n → o)

W (o)

W (n)

�(Uo)

�(Un)

e−βUo

e−βUn
= 1, (27)

or in other words,

acc(o → n) = min

{
1,

�(Uo)

�(Un)

W (n)

W (o)
eβ�U

}
. (28)

The key point in this new acceptance rule is that tem-
perature is now included – both in the Rosenbluth weights
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and the energetic terms for the old and new configurations.
In general, temperature is not specified in a Wang-Landau
simulation, although alternate methods do include temper-
ature explicitly.63, 64 Performing a simulation at an unspec-
ified temperature is generally considered a strength of the
algorithm. For instance, conventional MC simulations for a
simple 3D lattice lipid model completely missed a second
phase transition, which was easily identified using the Wang-
Landau algorithm.65 For lattice model simulations, one can
employ a simplified version of CBMC in which the Rosen-
bluth weight is the ratio of available number of lattice sites to
the total number of lattice sites, which eliminates the need for
temperature;65, 66 however, simply counting available sites is
not possible for continuous systems.

The simplest way to include temperature is to use the
thermodynamic relationship

1

T
=

(
∂S

∂E

)
N,V

(29)

since S = ln � (to within a constant); however, there are
several problems with this approach. First, we only have
an accurate estimate of the density of states, and thus the
temperature, towards the end of the simulation. Without
a reliable value for the density of states, the temperature
estimate fluctuates wildly, and can even become negative.
Second, this relationship is only valid at constant density,
which limits its applicability. Third, and most important,
the old and new configurations may (and likely will) have
different energies, which could lead to different temperatures.
While one could adjust the acceptance rule to take into
account a situation where βold �= βnew, this does not solve
the problem. The configurational-bias regrowth proceeds
bead-by-bead, which means we need to know both βold and
βnew at the start of the move. However, we do not know
the energy of the new configuration, and thus also the new
temperature, until the entire molecule is regrown.

Faller and de Pablo used a simple version of CBMC66 to
sample identity exchanges in a binary Lennard-Jones glass.38

However, their acceptance rule did not include the factor of
eβ�U derived in this work and in their calculation of the
Rosenbluth weights it is unclear if they specify a fictitious
temperature to calculate Boltzmann factors or use the den-
sity of states itself as a bias. Siretskiy et al. simulated semi-
stiff polymer chains using a variant of CBMC which includes
an extra term, called the “compaction factor.”67 If the com-
paction factor is set to 1, their acceptance rule is the same
as that derived here; however, their study was limited to a
single polymer chain with a fixed bond length. While more
complex than fully flexible polymers, this semi-stiff chain
is simpler than many molecular force fields which include
additional intra-molecular potentials. Recently, Ngale et al.
have incorporated CBMC into a variant of the Wang-Landau
algorithm.68 Although this work may initially appear simi-
lar to ours, their version of the Wang-Landau algorithm is
significantly different from the more standard Wang-Landau
method used here. Rather than calculate the density of states
as a function of the energy (�(U)), Ngale et al. calculate the
canonical ensemble partition function (Q(N,V, T )) at a fixed
number of molecules and temperature in order to calculate

the isobaric-isothermal partition function and thus determine
points along the vapor-liquid coexistence curve. Since they
are not performing a random walk in energy space, the CBMC
acceptance rule is unchanged from that found in conventional
simulations. Although this approach is useful for phase equi-
libria simulations, this version of the Wang-Landau algorithm
loses much of its attractiveness at low temperatures.

Recently, Radhakrishna et al. have expanded on the work
of Jain and de Pablo66 and applied CBMC to a lattice system
using a more complex biasing scheme, identical to that de-
rived here, including the energetic factor and temperature.69

They found that for simple lattice proteins they could spec-
ify a single “pseudo-temperature,” which was used over the
whole energy range. Although it is possible to perform Wang-
Landau simulations for continuous systems with CBMC us-
ing a “pseudo-temperature,” we find that the simulations are
very inefficient and less accurate than simulations performed
at a real temperature. Since the energy range is typically very
large, a common way to increase the efficiency of a Wang-
Landau simulation is to divide the system into multiple over-
lapping energy “windows,” then patch together the result-
ing density of states in some ad hoc fashion. The efficiency
of such a scheme depends on how evenly the workload of
the windows is distributed. Finding the optimal division of
the energy range is challenging, especially for systems with
more complex MC moves.70, 71 Care must be taken when con-
structing the windows to ensure that each window has a suf-
ficiently large range to sample all of the relevant configu-
rations and prevent the system from becoming trapped in a
metastable state.37, 45 Moreover, the best way of combining
the results is unclear. Thus, we have taken an alternate ap-
proach and instead divide the system into multiple temper-
ature windows with overlapping energies, where the speci-
fied energy range corresponds to the relevant energy range
for the temperature of each window. We then use standard
reweighting techniques72, 73 to combine the results in a sys-
tematic manner. We find that this results in more accurate and
efficient simulations (see supplementary material74). More-
over, we find that the errors resulting from using a pseudo-
temperature are increased as the chain length increases; thus,
we anticipate that using a pseudo-temperature could lead to
sampling problems for larger, more flexible molecules.

1. Temperature reweighting

To regain the ability to determine properties as a con-
tinuous function of temperature, we perform several simula-
tions in the desired temperature range and then use histogram
reweighting to join together the density of states. Although
histogram reweighting is generally performed in the context
of a grand canonical ensemble simulation,75 the same tech-
nique can be applied in the canonical ensemble, where we
reweight the energy distributions at several different tempera-
tures. In the canonical (NV T ) ensemble, the probability dis-
tribution function is f(E), given by

f (E) = �(N,V,E) exp(−βE)

Q(N,V, T )
, (30)
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where Q is the canonical ensemble partition function and � is
the microcanonical ensemble partition function or density of
states. By taking the natural logarithm of the above equation
and rearranging the terms, we get

ln � = ln f (E) + βE + C, (31)

where C is a run-specific constant. In conventional simula-
tions, one keeps track of a histogram f(E), but in a Wang-
Landau simulation we instead determine the density of states
�(E).

If we perform simulations at several different tempera-
tures with overlapping energy ranges, we can join the density
of states (or histogram) data using the technique of Ferrenberg
and Swendsen.72, 73 Say we have R overlapping histograms.
The composite probability P(E; β) of observing the system
at energy E for a specified temperature β is given by

P(E; β) =
∑R

i=1 fi(E) exp(−βE)∑R
i=1 Ki exp(−βiE − Ci)

, (32)

where Ki is the total number of observations (Ki = ∑
Efi(E))

for run i and Ci is a constant (“weight”) for run i. The weights
are obtained iteratively using the relationship

exp(Ci) =
∑
E

P(E; βi). (33)

Once we know P , we can calculate average thermodynamic
properties, such as the potential energy

〈U 〉β =
∑
E

P(E; β)E (34)

as well as the square of the potential energy

〈U 2〉β =
∑
E

P(E; β)E2 (35)

from which we can calculate the heat capacity as a contin-
uous function of temperature using the standard fluctuation
formula76

CV (T ) = 〈U 2〉 − 〈U 〉2

kBT 2
. (36)

Note that we are neglecting the kinetic energy in this calcula-
tion and including both the intra- and intermolecular energy
in U. While this means we cannot compare directly to exper-
imental data, we can still compare the results from different
MC methods, which is the primary focus of this work.

IV. SIMULATION DETAILS

Simulations were run for systems of linear alkanes, a rel-
atively simple class of molecules that provide an excellent
test case for configurational-bias moves.6–8 We have delib-
erately chosen a simple molecular system in order to more
easily compare the accuracy and efficiency of Wang-Landau
and traditional Boltzmann sampling. The model used was
the transferable potentials for phase equilibria – united atom
(TraPPE–UA) force field.10 For increased computational effi-
ciency, the TraPPE–UA force field employs pseudoatoms for
all CHx groups (where 0 ≤ x ≤ 4), which are located at the

TABLE I. TraPPE–UA parameters for linear alkanes.

Pseudo-atom σ [Å] ε/kB [K]

CH3 3.75 98.0
CH2 3.95 46.0

Bond type r0 [Å]

CHx–CHy 1.54

Angle type θeq [deg] kθ /kB [K]

CHx–CH2–CHy 114.0 62 500

Torsion type c0/kB [K] c1/kB [K] c2/kB [K] c3/kB[K]

CHx–CH2–CH2–CHy 0 335.03 −68.19 791.32

position of the carbon atom. The TraPPE–UA force field con-
tains terms for bond stretching, angle bending, dihedral rota-
tions, and nonbonded interactions. The bond lengths are fixed.
The angle bending is represented using a harmonic potential

ubend(θ ) = kθ

2
(θ − θeq)2, (37)

where θ is the bond angle, θeq is the equilibrium value for
that angle, and kθ is the force constant. Dihedral rotations are
represented using a cosine series, which for the CHx–CH2–
CH2–CHy torsion is given by

utor(φ) = c0 + c1[1 + cos(φ)] + c2[1 − cos(2φ)]

+ c3[1 + cos(3φ)]. (38)

Nonbonded interactions are described by pairwise-additive LJ
interactions

uLJ(rij ) = 4ε

[(
σij

rij

)12

−
(

σij

rij

)6
]

, (39)

where rij, εij, and σ ij are the separation, LJ potential well
depth, and LJ diameter, respectively. The unlike LJ interac-
tions are determined using the Lorentz-Berthelot combining
rules77

σij = 1

2
(σii + σjj ) and εij = (εiiεjj )1/2. (40)

The TraPPE–UA parameters for linear alkanes can be found
in Table I.

Simulations were run at constant density in the NV T

ensemble with a simulation box length of 52 Å and 600
interaction sites, or 200 propane, 150 n-butane, 100 n-hexane,
and 75 n-octane molecules. This results in a system with
a constant density of approximately 0.1 g/mL which forms
a dense vapor phase at high temperatures and a droplet at
low temperatures. The phase transition temperature can
be located by examining the heat capacity as a function
of temperature. A spherical center-of-mass based cutoff
of 14 Å with analytic tail corrections78 was employed for
the LJ interactions. The specific implementation of CBMC
employed in this work is the coupled-decoupled dual-cutoff
CBMC algorithm of Martin and Siepmann,13 which has
been used effectively with the TraPPE force field to simulate
complex molecules.18, 19, 21, 23 The shorter cutoff for CBMC
moves was 5 Å, and the number of trial sites k were kLJ = 10,
kbend = 1000, and ktor = 100 for LJ, bending, and torsional
interactions, respectively. For further details on the specific
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implementation of the algorithm, the reader is referred to the
original paper.13 For propane 20% of the moves were CBMC
regrowths, whereas for the longer chains 1/3 of the moves
were CBMC regrowths. The remaining moves were divided
evenly between center-of-mass translations and rotations.

When performing a Wang-Landau simulation, one must
carefully choose the parameters used to evaluate the conver-
gence of the simulation; namely, the flatness criterion and the
final modification factor. The flatness criterion controls when
the modification factor will be updated, while the final modi-
fication factor controls when the simulation will end. It is im-
portant that these parameters are chosen to have values strict
enough to produce reliable results, but that will also enable the
simulation to finish in a reasonable amount of time. To this
end, we have tested a variety of parameters for the propane
system (see discussion below), which allowed us to determine
that the modification factor should be updated when all the
histogram entries are not less than 85% of the average and
the simulation should end when the natural logarithm of the
final modification factor is less than 10−6. For all systems,
an energy bin width of 200 K was used, resulting in 300–
750 energy bins at each temperature, or 1300–2000 bins over-
all, where the number of bins increases as the chain length
increases and as the critical temperature is approached. We
found that the results were not strongly dependent on the size
of the bin width, although for sizes much larger or smaller
than 200 K the simulation time either increased (for smaller
bins) or the accuracy decreased (for larger bins). The upper
and lower bounds for the energy were determined from short
conventional MC simulations over a 10 K interval. Since we
were already performing conventional simulations for com-
parison (see below), this did not result in any extra effort on
our part. However, in cases where traditional sampling is dif-
ficult, the energy ranges could be determined using the adap-
tive procedure of Tröster and Dellago.79 Wang-Landau simu-
lations were performed at 10 K intervals throughout the tem-
perature range of interest, with a smaller interval of 5 K at
temperatures below the critical point. We found that by using
a smaller interval of 5 K below the critical point, where the
energy distribution at each temperature is narrower, we could
reduce the low temperature fluctuations in the heat capacity
by a small amount (see supplementary material74). For higher
statistical precision, four independent simulations were per-
formed and the errors are reported as the standard deviation.

To validate our results, we performed additional simu-
lations at select temperatures using conventional Boltzmann
sampling, with the heat capacity calculated on-the-fly using
the standard fluctuation equation (see Eq. (36)) where U is
again the intra- and intermolecular potential energy. For these
simulations, the reported results are the average of four inde-
pendent 1 × 106 cycle runs.

V. RESULTS AND DISCUSSION

A. Parameterization

Using a relatively strict flatness criterion of p = 80%,
several values of the final modification factor were tested in
order to find the optimal balance between efficiency and ac-
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FIG. 1. Heat capacity curves for the propane system showing the effect of
different final modification factors: final ln f = 10−8 (black), 10−6 (red), and
10−4 (green).

curacy. Although some researchers have used larger values of
the final modification factor37, 38, 47, 48 (often accompanied by
very strict flatness criteria), most recommend a value of 10−6

or smaller.40, 42–46, 49 With a very large final ln f of 10−4, the
resulting heat capacity curve is found to be very noisy (see
Figure 1). By decreasing the final ln f to 10−6, much more
satisfactory results are obtained, although the amount of sim-
ulation time required increases considerably (see Table II).
By decreasing the final ln f even further to 10−8, a heat capac-
ity curve that is even smoother than the results with 10−6 is
obtained, with even smaller error bars. However, the modest
increase in precision does not compensate for the very large

TABLE II. Comparison of the efficiency of Wang-Landau convergence cri-
teria for the propane system over a range of temperatures.

Flatness [%] Final ln f T [K] MC cycles

40 10−6 200 (6.4 ± 1.2) × 105

275 (1.2 ± 0.2) × 105

350 (3.6 ± 1.7) × 105

60 10−6 200 (1.0 ± 0.2) × 106

275 (2.2 ± 0.5) × 106

350 (7.3 ± 2.5) × 105

80 10−6 200 (3.3 ± 0.9) × 106

275 (6.3 ± 2.4) × 106

350 (1.0 ± 0.3) × 106

85 10−6 200 (3.3 ± 0.9) × 106

275 (8.7 ± 1.9) × 106

350 (1.9 ± 0.9) × 106

80 10−4 200 (3.7 ± 0.6) × 105

275 (1.0 ± 0.1) × 106

350 (2.3 ± 0.2) × 105

80 10−6 200 (3.3 ± 0.9) × 106

275 (6.3 ± 2.4) × 106

350 (1.0 ± 0.3) × 106

80 10−8 200 (9.1 ± 2.1) × 106

275 (2.2 ± 0.6) × 107

350 (3.3 ± 1.3) × 106
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FIG. 2. Heat capacity curves for the propane system showing the effect of
different flatness criteria: p = 85% (black), 80% (red), 60% (green), and 40%
(blue).

increase in simulation time required for convergence. Thus, in
agreement with previous work,40, 42, 43, 45, 46 we find that a final
value of ln f = 10−6 is a reasonable choice.

After determining the appropriate final modification fac-
tor, the effect of the flatness criterion on the results was
tested. Although we began with a fairly strict value of 80%,
we wanted to see if this value could be reduced in order
to decrease the amount of simulation time required for con-
vergence since many previous Wang-Landau simulations of
continuous systems use very loose flatness criteria of 20%–
40%43–46 or only require each histogram entry to be vis-
ited a specified number of times;37, 41 though others have
determined that a stricter flatness criterion of 80%–90% is
necessary.38, 40, 47, 48 To determine an appropriate value for our
systems, we tested flatness criteria of 40% and 60%, in addi-
tion to the 80% already used in determining the final modifi-
cation factor. Reducing the flatness criterion does reduce the
number of MC cycles required for convergence (see Table II);
however, as can be seen in Figure 2, the resulting heat capac-
ity curves are unsatisfactory, given the large fluctuations, es-
pecially for the system with p = 40%. The heat capacity curve
with a flatness of 80%, while smoother than the other curves,
still had larger fluctuations than one might like. Thus, we ran
an additional test with an even stricter flatness criterion of
85%. The resulting heat capacity curve has much smaller fluc-
tuations with only a modest increase in the simulation time
(see Table II). Thus, for the remaining simulations we have
used a flatness criterion of 85% with a value of 10−6 for the
final value of the natural logarithm of the modification factor.

B. Validation

To validate the proposed WL-CBMC method, additional
simulations were performed for longer chains, namely,
n-butane, n-hexane, and n-octane. From the results of these
simulations, as shown in Figure 3, we find that our implemen-
tation of CBMC within a Wang-Landau simulation yields
results for the heat capacity in excellent agreement with
conventional Boltzmann sampling simulations. Each system
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FIG. 3. Heat capacity curves for the propane (red), n-butane (green),
n-hexane (blue), and n-octane (magenta) systems. Black triangles at select
temperatures are the results from conventional Boltzmann sampling simula-
tions.

goes through a phase transition from a dense vapor phase
(ρ ≈ 0.1 g/mL) to a condensed droplet and the phase
transition shifts to higher temperatures as the chain length
increases. The heat capacity at each temperature increases as
the chain length increases, in agreement with the findings of
Bessières et al.80

Although both the Wang-Landau algorithm and conven-
tional MC simulations yield the same results to approximately
the same degree of accuracy, we also need to compare the
efficiency of the two methods. Remembering that the Boltz-
mann sampling simulations were run for 106 MC cycles, it
is easy to see from Table III that the Wang-Landau simula-
tions require a larger amount of simulation time. Addition-
ally, we find that the number of cycles required for conver-
gence is strongly dependent on the initial conditions. Given
that we do not know a priori which starting configuration
will require the least (or the most) cycles for convergence,
it is difficult to predict exactly how many cycles will be re-
quired. Although the Wang-Landau algorithm does not of-
fer any significant time-saving advantages for calculating the
heat capacity of the systems examined here, it may be more
attractive for low-temperature studies, such as supercooled
liquids, glasses, and polymers, where conventional MC sam-
pling is more problematic. To increase the efficiency of the
algorithm, several researchers have proposed variants of the
original Wang-Landau method.39, 50, 63, 64, 81–85 The 1/t method
of Belardinelli and Pereyra85 has been shown to be partic-
ularly efficient for a variety of systems.48, 86–88 Assessing the

TABLE III. Average number of MC cycles to convergence and average time
(in s) for 106 MC cycles on a 2.26 GHz Intel Xeon Processor.

Molecule T [K] MC cycles Time for 106 cycles [s]

Propane 275 (8.7 ± 1.9) × 106 1600 ± 300
Butane 315 (5.1 ± 0.9) × 106 4900 ± 400
Hexane 370 (3.5 ± 0.9) × 106 6900 ± 700
Octane 410 (3.4 ± 0.6) × 106 7300 ± 900
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accuracy and efficiency of these different flavors of the Wang-
Landau algorithm is beyond the scope of this work.

VI. CONCLUSIONS

Advanced Monte Carlo moves such as configurational-
bias can be incorporated into the Wang-Landau algorithm by
re-deriving the acceptance rule. For the CBMC move, this
requires either a fictitious temperature for the entire energy
range or specifying a real temperature with appropriate values
for the upper and lower bound of the energy. We find that for
continuous systems using a real temperature with reweight-
ing results in greater accuracy and efficiency. Even so, con-
ventional Boltzmann sampling simulations are more efficient
than the Wang-Landau method for the systems studied in this
work; however, the Wang-Landau algorithm may be more
suited to low-temperature systems or other situations where
conventional sampling becomes problematic. With the inclu-
sion of CBMC, the Wang-Landau algorithm becomes appli-
cable to more complex molecular systems.
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