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Abstract

A semi-empirical equation of state was developed for square-well chain fluids on the basis of Monte Carlo (MC) simulation data. The
equation was formed by combining terms describing non-bonded square-well segments, hard-sphere chain formation, and a perturbation term
describing the square-well contribution to chain formation. The functional dependence on the chain length is the same as that derived in
the statistical associating fluid theory (SAFT). Extensive isobaric–isothermal MC simulations were performed for the dimer, 4-mer, 8-mer,
and 16-mer square-well fluids at temperatures below or near the critical point. The new equation satisfactorily represents the volumetric
properties of square-well chain fluids, up to and including the 100-mer, which was the longest chain length studied. Additionally, the new
model accurately reproduces the phase envelopes of the dimer and 4-mer fluids, however, it underestimates the vapor pressures for 8-mer’s
and above.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The development of an accurate equation of state for
chain molecules is theoretically and practically important.
To gain insight into the microscopic and macroscopic be-
havior of chain molecules, many investigators have per-
formed molecular simulations for various model chain fluids,
such as hard-sphere chains[1–7], square-well chains[8–22],
Lennard-Jones chains[14], and Yukawa chains[23–25].
Among these chain fluids, the square-well chain fluid is the
simplest one having both repulsive and attractive parts. Ad-
ditionally, the potential model has four parameters (chain
length m, hard core diameterσ, characteristic attraction
energyε, and dimensionless well widthλ), resulting in sig-
nificant flexibility when fitting to experimental data. Further-
more, the properties of the square-well fluid can be found
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accurately from perturbation theory in terms of hard sphere
reference states.

Simulation studies of these model fluids provide valuable
information from which it is possible to develop equations
of state for real molecules. In recent years, the statisti-
cal associating fluid theory (SAFT)[26,27] and its many
variations[28] have been successfully applied to calculate
thermodynamic properties of both model chain molecules
and real experimental systems of small molecules, poly-
meric materials, and their mixtures[29]. In SAFT and re-
lated molecular-based equations of state[26,27,30–39], the
perturbation theories of Barker and Henderson[40] and
Wertheim[41–44]have been widely adopted to represent the
reference unbonded (or monomer) segments and bond for-
mation for square-well chain molecules. One of the imped-
iments to the more widespread adoption of SAFT-derived
equations of state for process simulation is perceived the
complexity of the association term and resulting computa-
tional expense. In the present study, a simple semi-empirical
equation of state is developed on the basis of MC sim-
ulation data for square-well chain molecules. The single
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closed-form mathematical expression obtained should en-
sure its usefulness in process calculations.

In the last decade, several MC simulation studies for
square-well chain fluids and their mixtures have been re-
ported in the literature. For pure square-well chain fluids
PVT properties [9–11,13,14], vapor–liquid equilibrium
(VLE) phase envelopes[8,14,17], second virial coef-
ficients [12], configurational internal energy[15], and
constant-volume heat capacity[19] data are available.
For square-well chain mixtures, Gulati and Hall[16] and
Paredes et al.[19] calculatedPVT properties and config-
urational internal energy, Davies et al.[17] computed the
VLE properties for mixtures of square-well monomers and
dimers, while McCabe et al.[45] studied non-conformal
monomer—dimer mixtures. However, despite this body
of data, the volumetric properties of square-well chain
molecules at conditions below or near the critical tempera-
tures are rather limited. Consequently, in the present study,
MC simulations in the isothermal–isobaric (NPT) ensem-
ble have been performed for the dimer, 4-mer, 8-mer, and
16-mer fluids to obtain a more complete description of the
PVT behavior.

2. Monte Carlo simulations

We have calculated thePVT behaviour and structure of
the dimer, tetramer, 8-mer and 16-mer square-well fluids us-
ing NPT MC simulation. The simulations were performed
with systems ofN = 128 for the dimer and 16-mer flu-
ids andN = 256 for the 4-mer and 8-mer fluids. Initial
configurations were generated at low pressure by arrang-
ing the molecules on a face-centred-cubic lattice. Simula-
tions at higher pressure, and hence density, were then started
from this equilibrated initial configuration and allowed to
re-equilibrate to the corresponding density.

One simulation cycle consisted ofN attempted displace-
ment, reorientation and reptation moves (i.e. the same num-
ber of MC moves as the total number of molecules in the
system), one attempted volume change, and a specific num-

Table 1
Comparison of the results with literature values

T∗ P∗ η Uncertainty N Note

Dimer 2.0 1.0998 0.314 0.001 128× 2 This work
2.0 1.0998 0.3142 256 Tavares et al.[13]

4-Mer 2.0 0.46 0.309 0.001 256× 2 This work
2.0 0.46 0.309 Escobedo and de Pablo[14]
2.0 4.96 0.426 0.001 256× 2 This work
2.0 4.96 0.428 Escobedo and de Pablo[14]

8-Mer 2.5 0.2 0.230 0.001 256× 2 This work
2.5 0.2 0.234 Escobedo and de Pablo[14]

16-Mer 4.0 2.45865 0.313 0.002 128× 2 This work
4.0 2.45865 0.31416 70 Tavares et al.[13]

Results are given in terms of reduced units:T ∗ = kT/ε, P∗ = Pσ3/ε, andη = (π/6)ρσ3 whereρ is the segment number density.

ber of attempted re-growths of randomly selected molecules
using continuum configurational bias sampling (CCB)[46].
CCB was used in the reptation and re-growth moves for
N-mers greater thanN = 4. In all the simulations the maxi-
mum displacement and volume change was adjusted to give
an acceptance ratio of between 30 and 40%, and the num-
ber of re-growths controlled so that between 1 and 3% of
the molecules are re-grown each cycle. The thermodynamic
properties of the system were obtained as ensemble averages
and the errors estimated by determining the standard devi-
ation. An initial simulation of 106 cycles was performed to
equilibrate the system, depending upon pressure and chain
length, before averaging for between 106 and 2×106 cycles.
As can be seen fromTable 1, the agreement between the re-
sults obtained in this study and literature values is within the
uncertainties of the computations. Having validated the code
we then performed simulations at reduced temperatures (T∗)
from 0.6 to 1.85 for the dimer fluid, from 1.3 to 2.0 for the
4-mer, and from 1.5 to 2.0 for the 8-mer and 16-mer fluids.
The reduced pressures (P∗) are in the range of 0.0006 up to
3.0 for all systems. In addition toλ = 1.5, simulations were
also performed with different values of the well-width, from
λ = 1.275 toλ = 1.725 for the dimer and 4-mer fluids.

3. Simulation results

In this study, simulations at 134 state conditions have
been performed.Tables 2–5list the simulation results for
the dimer, 4-mer, 8-mer, and 16-mer fluids, respectively.
The PVT diagrams are presented inFigures 1–4. We note
from the figures that the results from different investigators
appear to be consistent, except for the isotherm atT ∗ = 2.0
for the 4-mer near the critical region (P∗ = 0.07–0.12).
Figure 2shows that our results are located in between those
of Yethiraj and Hall[9] and Taveres et al.[13].

We have also studied the effect of the well-width for
the square-well potential on the volumetric properties.
Figures 5 and 6illustrate, respectively, thePVT properties
of the dimer and 4-mer fluids withλ ranging from 1.275 to
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Table 2
Simulation results for square-well dimer fluid

T∗ P∗ η Uncertainty Z λ

0.6 0.001 0.453 0.001 0.004 1.5
0.05 0.455 0.001 0.192 1.5
0.1 0.457 0.001 0.383 1.5
0.5 0.467 0.001 1.869 1.5
1.5 0.486 0.001 5.387 1.5
3.0 0.510 0.001 10.267 1.5

0.8 0.001 0.425 0.001 0.003 1.5
0.05 0.426 0.001 0.154 1.5
0.1 0.428 0.001 0.306 1.5
0.5 0.437 0.001 1.498 1.5
1.5 0.458 0.001 4.287 1.5
3.0 0.483 0.001 8.130 1.5

1.0 0.02 0.397 0.001 0.053 1.5
0.05 0.398 0.001 0.132 1.5
0.1 0.400 0.001 0.262 1.5
0.5 0.412 0.001 1.271 1.5
1.5 0.436 0.001 3.603 1.5
3.0 0.460 0.001 6.830 1.5

1.2 0.05 0.365 0.001 0.120 1.5
0.1 0.368 0.001 0.237 1.5
0.5 0.386 0.001 1.130 1.5
1.5 0.413 0.001 3.169 1.5
3.0 0.441 0.001 5.937 1.5

1.4 0.05 0.315 0.001 0.119 1.5
0.1 0.325 0.002 0.230 1.5
0.5 0.357 0.001 1.048 1.5
1.5 0.394 0.001 2.848 1.5
3.0 0.424 0.001 5.292 1.5

1.5 0.07 0.289 0.003 0.169 1.5
0.1 0.295 0.001 0.237 1.5

1.65 0.05 0.047 0.001 0.675 1.5
0.06 0.061 0.005 0.624 1.5
0.07 0.074 0.005 0.600 1.5
0.08 0.117 0.005 0.434 1.5
0.09 0.171 0.017 0.334 1.5
0.1 0.200 0.008 0.317 1.5
0.2 0.272 0.001 0.467 1.5
0.5 0.318 0.001 0.998 1.5
1.5 0.367 0.001 2.594 1.5
3.0 0.403 0.001 4.725 1.5

1.85 0.05 0.035 0.002 0.809 1.5
0.1 0.082 0.001 0.690 1.5
0.2 0.198 0.001 0.572 1.5
0.5 0.280 0.001 1.011 1.5
1.5 0.348 0.001 2.440 1.5
3.0 0.388 0.001 4.377 1.5

1.4 0.05 0.038 0.001 0.984 1.275
0.5 0.256 0.001 1.461 1.275
1.5 0.367 0.001 3.057 1.275
3.0 0.424 0.001 5.292 1.275

1.4 0.05 0.373 0.001 0.100 1.725
0.5 0.389 0.001 0.961 1.725
1.5 0.412 0.001 2.723 1.725
3.0 0.438 0.001 5.123 1.725

1.85 0.05 0.027 0.001 1.048 1.275
0.1 0.053 0.001 1.068 1.275
0.5 0.184 0.001 1.538 1.275
3.0 0.371 0.001 4.577 1.275

1.85 0.05 0.320 0.001 0.088 1.725
0.1 0.323 0.001 0.175 1.725
0.5 0.341 0.001 0.830 1.725
3.0 0.402 0.001 4.224 1.725

Table 3
Simulation results for square-well 4-mer fluid

T∗ P∗ η Uncertainty Z λ

1.3 0.001 0.380 0.001 0.004 1.5
0.02 0.381 0.001 0.085 1.5
0.05 0.381 0.002 0.211 1.5
0.1 0.384 0.001 0.420 1.5
0.5 0.399 0.001 2.019 1.5
1.5 0.424 0.001 5.700 1.5
3.0 0.450 0.001 10.741 1.5

1.5 0.02 0.345 0.001 0.081 1.5
0.05 0.348 0.002 0.201 1.5
0.1 0.353 0.001 0.396 1.5

1.7 0.05 0.303 0.003 0.203 1.5
0.1 0.312 0.001 0.395 1.5
0.5 0.351 0.001 1.755 1.5
1.5 0.390 0.001 4.738 1.5
3.0 0.419 0.001 8.821 1.5

1.8 0.03 0.233 0.008 0.150 1.5
0.05 0.270 0.003 0.215 1.5
0.1 0.287 0.003 0.405 1.5
0.5 0.338 0.001 1.721 1.5
1.5 0.380 0.001 4.593 1.5
3.0 0.412 0.001 8.472 1.5

1.9 0.03 0.078 0.010 0.424 1.5
0.05 0.193 0.002 0.286 1.5
0.1 0.253 0.002 0.436 1.5
0.5 0.325 0.001 1.696 1.5
1.0 0.355 0.001 3.105 1.5

2.0 0.03 0.049 0.001 0.641 1.5
0.05 0.107 0.001 0.489 1.5
0.07 0.175 0.005 0.419 1.5
0.1 0.217 0.004 0.483 1.5
0.3 0.288 0.001 1.091 1.5
0.5 0.312 0.001 1.678 1.5

1.7 0.05 0.054 0.001 1.141 1.275
0.5 0.254 0.001 2.425 1.275
3.0 0.410 0.001 9.015 1.275

1.7 0.05 0.372 0.001 0.166 1.725
0.5 0.386 0.001 1.596 1.725
3.0 0.433 0.001 8.536 1.725

2.0 0.05 0.045 0.001 1.164 1.275
0.5 0.214 0.001 2.447 1.275
3.0 0.382 0.001 8.224 1.275

2.0 0.05 0.346 0.001 0.151 1.725
0.5 0.363 0.001 1.442 1.725
3.0 0.412 0.001 7.625 1.725

1.725. From the figures we note that the isotherms have a
strong dependence onλ, especially in the vicinity of critical
point.

4. Equation of state for square-well chain molecules

A new equation of state for square-well chain molecules
was derived by summing the contributions from non-bonded
square-well segments,Zsw,nb, and chain formation for
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Table 4
Simulation results for square-well 8-mer fluid

T∗ P∗ η Uncertainty Z λ

1.5 0.0006 0.369 0.001 0.005 1.5
0.02 0.370 0.001 0.151 1.5
0.05 0.372 0.002 0.375 1.5
0.1 0.375 0.001 0.743 1.5
1.0 0.406 0.001 6.878 1.5

1.7 0.003 0.334 0.003 0.022 1.5
0.02 0.338 0.001 0.146 1.5
0.05 0.341 0.002 0.361 1.5
0.1 0.345 0.001 0.714 1.5
0.5 0.370 0.001 3.330 1.5
1.5 0.402 0.001 9.194 1.5
3.0 0.430 0.001 17.191 1.5

1.9 0.005 0.287 0.004 0.038 1.5
0.02 0.292 0.005 0.151 1.5
0.05 0.299 0.001 0.369 1.5
0.1 0.311 0.001 0.709 1.5
0.5 0.349 0.001 3.158 1.5
1.5 0.387 0.001 8.545 1.5
3.0 0.416 0.001 15.899 1.5

2.0 0.008 0.249 0.002 0.067 1.5

square-well molecules,Zsw,cf :

Z = Zsw,nb + Zsw,cf (1)

For square-well chain molecules withm segments,Z is de-
fined as

Z = πP∗m
6T ∗η

(2)

whereP∗ = Pσ3/ε, T ∗ = kT/ε, η is the reduced density
(=πσ3ρ/6), andρ the number density of segments.

Table 5
Simulation results for square-well 16-mer fluid

T∗ P∗ η Uncertainty Z λ

1.5 0.003 0.379 0.002 0.044 1.5
0.02 0.379 0.001 0.295 1.5
0.05 0.382 0.001 0.731 1.5
0.1 0.383 0.001 1.458 1.5
3.0 0.428 0.001 39.148 1.5

1.7 0.003 0.350 0.003 0.042 1.5
0.02 0.351 0.001 0.281 1.5
0.05 0.356 0.001 0.692 1.5
0.1 0.362 0.002 1.361 1.5
0.5 0.381 0.001 6.467 1.5
1.5 0.405 0.001 18.252 1.5
3.0 0.424 0.002 34.868 1.5

2.0 0.003 0.295 0.002 0.043 1.5
0.02 0.300 0.001 0.279 1.5
0.05 0.304 0.002 0.689 1.5
0.1 0.314 0.001 1.334 1.5
0.5 0.347 0.001 6.036 1.5

Figure 1. PVT diagram for square-well dimer fluid atT ∗ = 0.6 (�),
T ∗ = 0.8 (�), T ∗ = 1.0 ( ), T ∗ = 1.2 ( ), T ∗ = 1.4 (�), T ∗ = 1.5 ( ))
[13], T ∗ = 1.65 ( ), T ∗ = 1.85 ( ), T ∗ = 2.0 (�) [13], T ∗ = 3.0 ( )
[13] andT ∗ = 4.0 (�) [13]. Also shown are the vapor–liquid coexisting
points (⊕) [17], calculated results from the SAFT-VR equation (solid
line) and the new equation of state (dashed line).

Figure 2. PVT diagram for square-well 4-mer fluid atT ∗ = 1.3 (�),
T ∗ = 1.5 ( ) [13], T ∗ = 1.7 (�), T ∗ = 1.8 ( ), T ∗ = 1.9 ( ), T ∗ = 2.0
(�) [13], T ∗ = 2.0 ( ) [9], T ∗ = 2.0 (�) [14], T ∗ = 2.0 (�), T ∗ = 2.5
(�) [14], T ∗ = 3.0 (�) [14] and T ∗ = 4.0 (�) [13]. Also shown are
the vapor–liquid coexisting points (⊕) [14], calculated results from the
SAFT-VR equation (solid line) and the new equation of state (dashed
line).
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Figure 3.PVT diagram for square-well 8-mer fluid atT ∗ = 1.5 (�) [13],
T ∗ = 1.7 (�), T ∗ = 1.9 ( ), T ∗ = 2.0 ( ) [14], T ∗ = 2.5 (�) [14],
T ∗ = 3.0 ( ) [13] andT ∗ = 4.0 (�) [13]. Also shown are the vapor–liquid
coexisting points (⊕) [14], calculated results from the SAFT-VR equation
(solid line) and the new equation of state (dashed line).

Figure 4. PVT diagram for square-well 16-mer fluid atT ∗ = 1.5 ( )
[13], T ∗ = 1.5 (�), T ∗ = 1.7 (�), T ∗ = 2.0 (�) [13], T ∗ = 2.0 ( ),
T ∗ = 3.0 ( ) [13] andT ∗ = 4.0 (�) [13]. Also shown are the vapor–liquid
coexisting points (⊕) [14], calculated results from the SAFT-VR equation
(solid line) and the new equation of state (dashed line).

4.1. Contribution of non-bonded square-well segments

For a square-well chain molecule withm segments, the
compressibility factor of non-bonded square-well segments
is expressed as

Zsw,nb = 1 + m[(Zhs − 1) + Zsw,att] (3)

Figure 5. Volumetric properties of square-well dimer fluid atT ∗ = 1.85
and λ = 1.275 ( ); λ = 1.5 (�); λ = 1.725 ( ). Dashed lines are the
calculated results from the new equation of state.

Figure 6. Volumetric properties of square-well 4-mer fluid atT ∗ = 2.0
and λ = 1.275 ( ); λ = 1.5 (�); λ = 1.725 ( ). Dashed lines are the
calculated results from the new equation of state.

where Zhs and Zsw,att are the compressibility factors
of hard-sphere molecules and attractive contribution of
square-well monomers, respectively. Lin et al.[47] have
developed simple expressions for representation ofZhs and
Zsw,att:

Zhs = 1 + k1η

1 − k2η
(4)

and

Zsw,att = (λ − 0.5)3/2
[

k6η + k7η
2

T ∗(1 − k2η)(1 − k3η)

]
(5)
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Table 6
PVT data used in the parameter estimation

T∗ P∗ λ N Source

Dimer 0.6–1.85 0.001–3.0 1.275–1.725 62 This work
1.0–1.46 Psat 1.5 12 Davies et al.[17]
1.5–4.0 0.029–27.938 1.5 54 Tavares et al.[13]

128
4-Mer 1.3–2.0 0.001–3.0 1.275–1.725 44 This work

2.0–3.0 0.044–9.611 1.5 16 Escobedo and de Pablo[14]
1.5–3.0 0.033–5.582 1.5 12 Yethiraj and Hall[9]
1.4–1.75 Psat 1.5 12 Escobedo and de Pablo[14]
1.5–4.0 0.007–13.061 1.5 22 Tavares et al.[13]

106
8-Mer 1.5–2.0 0.0006–3.0 1.5 20 This work

2.0–3.0 0.03–7.505 1.5 14 Escobedo and de Pablo[14]
2.0–3.0 0.077–6.028 1.5 7 Yethiraj and Hall[9]
1.6–1.97 Psat 1.5 12 Escobedo and de Pablo[14]
1.5–4.0 0.161–11.793 1.5 16 Tavares et al.[13]

69
16-Mer 1.5–2.0 0.003–3.0 1.5 17 This work

3.0 0.055–4.837 1.5 4 Yethiraj and Hall[9]
1.95–2.2 Psat 1.5 12 Escobedo and de Pablo[14]
1.5–4.0 0.501–7.682 1.5 14 Tavares et al.[13]

47
32-Mer 2.15–2.41 Psat 1.5 10 Escobedo and de Pablo[14]

10
100-Mer 3.0 0.057–4.531 1.5 4 Escobedo and de Pablo[14]

2.35–2.41 Psat 1.5 6 Escobedo and de Pablo[14]

10

Total N 370

The values ofk1 to k7 were determined from fitting to the
simulation results of hard-sphere molecules and square-well
monomers (withm = 1). With the optimal values of
k1 = 3.453667,k2 = 1.610016,k3 = −1.57253,k6 =
−16.504144,k7 = 21.443081,Eqs. (4) and (5)represent
the properties of hard spheres and square-well monomers
well [47].

4.2. Contribution of square-well chain formation

The compressibility factors for square-well chain forma-
tion is calculated by adding the reference hard-sphere chain
formation,Zhs,cf , term to a perturbation term,Zsw,cf,pert:

Zsw,cf = Zhs,cf + Zsw,cf,pert (6)

The expression forZhs,cf is taken from the first-order ther-
modynamic perturbation theory of Wertheim (TPT1)[48],

Zhs,cf = (1 − m)
2.5η − η2

(1 − η)(1 − 0.5η)
(7)

The perturbation term,Zsw,cf,pert, is formulated as an empir-
ical function in terms of the reduced temperature and reduce
density:

Figure 7. Comparison of the calculated compressibility factor from theory
(solid line) and simulation () [13] for the square-well dimer fluid at
T ∗ = 3.0. Also shown are the individual contributions:Zsw,nb (dashed),
Zhs,cf (dot-dashed) andZsw,cf,pert (dot–dot-dashed).
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Figure 8. Comparison of the calculated compressibility factor from theory
(solid line) and simulation (�) [14] for the square-well 100-mer fluid at
T = 3.0. Also shown are the individual contributions:Zsw,nb (dashed),
Zhs,cf (dot-dashed) andZsw,cf,pert (dot–dot-dashed).

Zsw,cf,pert= (1 − m)

[
1

T ∗ (a1η + a2η
2 + a3η

3 + a4η
4)

+ a5η

T ∗2
+ a6η

T ∗3

]
(8)

Note that the dependence onm is consistent with SAFT.
IntroducingEqs. (3)–(8)into Eq. (1)gives the new equation
of state for square-well chain molecules as:

Figure 9. Comparison of the calculated compressibility factors (dashed
line) with simulation results for square-well 4-mer (�) [14], 8-mer (�)
[14], 16-mer ( ) [13] and 100-mer (�, y-scale= Z/100) [14] fluids at
T ∗ = 3.0.

Z = 1 + m[(Zhs − 1) + Zsw,att]

+ (1 − m)(Zhs,cf + Zsw,cf,pert)

= 1 + m

{
(k1 + k2)η

1 − k2η
+ (λ − 0.5)3/2

×
[

k6η + k7η
2

T ∗(1 − k2η)(1 − k3η)

]}

+ (1 − m)
2.5η − η2

(1 − η)(1 − 0.5η)

+ (1 − m)

[
1

T ∗ (a1η + a2η
2 + a3η

3 + a4η
4)

+ a5η

T ∗2
+ a6η

T ∗3

]
(9)

Figure 10. Comparison of the calculatedT∗–η phase envelopes and vapor
pressures from the new equation of state (dashed line) with the simulation
results for square-well monomer[22] of λ = 2.0 (�), λ = 1.75 (�),
λ = 1.5 ( ), andλ = 1.25 ( ).
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Figure 11. Comparison of the calculated vapor pressures from the new equation of state (dashed line) and the SAFT-VR equation (solid line) with
simulation results () [17] for square-well dimer fluid.

The coefficients,a1 to a6, in the above equation were ob-
tained by fitting the model to the MC simulation data of
square-well chain molecules with the following objective
function,∆:

� =
np∑
i=1

|P∗
icalc − P∗

isiml| (10)

wherenp is the number of data points. In total, 370 MC data
points are used in the parameter determination. The informa-
tion from these data sources is summarized inTable 6. With
the optimal values ofa1 = −2.393582,a2 = −82.311554,
a3 = 543.897526,a4 = −821.080818,a5 = 2.342257,
a6 = −2.847097, the new model correlates thePVT simu-
lation data to an average absolute deviation (AAD) of 0.142
for P∗ and 0.440 for the compressibility factor,Z.

Figures 7 and 8present the predicted compressibility fac-
tors, including individual contributions, from this new equa-
tion of state atT ∗ = 3.0 for the dimer and 100-mer fluids,
respectively. The calculated compressibility factors agree
well with the MC simulation results for both chain fluids
over the entire density range. These two graphs show that
the contribution of non-bonded square-well segments is the
dominant term, and that the hard-sphere chain formation
term is a negative contribution (attraction). Although the
magnitude of the perturbation due to square-well chain for-
mation is relatively small compared to the other terms, this
correction term is the key to obtaining accurate results. Good
agreement between the theoretical predictions and simula-
tion data is also shown inFigure 9, which compares the cal-

culated compressibility factors with the MC simulation re-
sults for 4-mer, 8-mer, 16-mer, and 100-mer fluids atT ∗ =
3.0. The new equation quantitatively represents thePVT be-
havior of square-well chain molecules over a diverse range
of conditions, except in the region near the critical point.
This new equation is also applicable to the square-well chain
molecules with variable well-width, as shown inFigures 5
and 6.

In addition to volumetric property calculation, the new
equation is also applied to vapor–liquid equilibrium (VLE)
prediction. At a givenT∗, the reduced densities of the coex-
istence phases (ηvap andηliq ) are determined from the fol-
lowing simultaneous equations:

P∗(T ∗, ηvap) = P∗(T ∗, ηliq) (11)

µvap(T
∗, ηvap) = µliq(T ∗, ηliq) (12)

or

ln ηvap + µE
vap

kT
= ln ηliq +

µE
liq

kT
(13)

where the expression of the excess chemical potential (µE)
for the proposed equation of state is given by

µE

kT
=

∫ η

η=0

Z − 1

η
dη + Z − 1

= m(k1 + k2)

k2
ln

(
1

1 − k2η

)
+ m(λ − 0.5)3/2

T ∗(k2 − k3)

×
[
k6 ln

(
1 − k3η

1 − k2η

)
− k7

k2
ln(1 − k2η)
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+ k7

k3
ln(1 − k3η)

]
+ (1 − m)ln

[
1 − 0.5η

(1 − η)3

]

+ (1 − m)
[( a1

T ∗ + a5

T ∗2
+ a6

T ∗3

)
η + a2

2T ∗ η2

+ a3

3T ∗ η3 + a4

4T ∗ η4
]

+ Z − 1 (14)

Once the coexisting densities have been determined,
the corresponding vapor pressure is readily obtained from
Eq. (11). Figure 10compares the calculated vapor pressure,
saturated vapor and liquid densities with the simulation re-
sults of del Rio et al.[22] for the square-well monomer of

Figure 12. Comparison of the calculatedT∗–η phase envelopes from the
new equation of state (top half, dashed curves) and the SAFT-VR equation
(bottom half, solid curves) with simulation results for square-well dimer
( , ) [8,17], 4-mer (�) [14], 8-mer (�) [14], 16-mer ( ) [14], 32-mer
( ) [14] and 100-mer (�) [14] fluids.

variable range. We note that this simulation data was not in-
cluded in the fitting process. The new model accurately rep-
resents the saturated properties for the square-well monomer
for λ=1.25–1.75, but underestimates the critical properties
of the square-well monomer withλ = 2.0. Figure 11com-
pares the predicted vapor pressures with the MC simulation
data for square-well dimers.Figure 12presentsT∗–η phase
envelopes for the dimer fluid to the 100-mer fluid. From
the figure we can see there is good agreement between the
new equation of state and the simulation data. For compar-
ison we include the predictions of the SAFT-VR EOS[32],
which is seen to overestimate the critical temperatures.
However, this is to be expected for a classical equation of
state which is analytical in the free energy and no attempt
has been made to optimize the agreement between the
SAFT-VR EOS and the simulation results. This agreement
could be improved by using a higher order perturbation
theory in deriving the properties of the square-well fluid
or by incorporating the non-analytical behavior seen at
the critical point of real fluids as in the SAFT-VRX EOS
[49,50]. For the new model, good agreement is observed in
the critical region for both the dimer and 4-mer fluids. For
example, the critical point of 4-mer fluid was estimated at
the reduced temperature of 1.81 and the reduced density of
0.175, while the simulation result was at 1.90 and 0.134,
respectively. The saturated vapor pressures and the critical
density, however, were underestimated for longer chains.

5. Conclusions

The volumetric properties of square-well chain molecules
have been determined from MC simulation using the NPT
ensemble for the dimer, 4-mer, 8-mer, and 16-mer fluids
at temperatures near or below the critical point.PVT di-
agrams were presented for the square-chain fluids studied
and comparisons made with simulation data taken from the
literature. A new equation was developed for square-well
chain molecules, based on the available MC data. In gen-
eral, this new equation is capable of describing quantita-
tively the PVT behavior for square-well chain fluids over a
wide range of conditions. Excellent results were also ob-
tained for the vapor–liquid equilibrium calculations for the
dimer and 4-mer molecules. The new equation, however,
underestimates the saturated pressures for chain molecules,
longer than eight.

List of symbols
ai coefficients
k Boltzmann’s constant
ki coefficients
m chain length (number of segment)
np number of data points
N number of molecule
P pressure
P∗ reduced pressure
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T temperature
T∗ reduced temperature
V volume
Z compressibility factor

Greek letters
σ hard core diameter
∆ objective function
ρ number density of segment
ε characteristic attraction energy
λ dimensionless well width
η reduced density
µ chemical potential

Subscripts
att attractive
cf chain formation
hs hard-sphere
liq liquid phase
nb non-bounded
pert perturbation
sw square-well
vap vapor phase

Superscripts
calc calculated value
E excess property
sat saturated
siml simulation
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